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Image Formation

Last class we looked at the radiometry of image formation
In this lecture we shall look at applications of radiometric principles



Applications

We shall look at

• Photometric Stereo : 3D Shape using multiple light sources

• Will not discuss Illumination Cones
• Under assumptions images of objects lie in low-dim space
• Can explain many observations
• Build models for recognition (independent of lighting)

• Will not discuss Shape from Shading (3D from single image)

• Major recent development: Neural Radiance Fields (NeRF)



Applications : Photometric Stereo

• Assume a Lambertian model

• Fix camera and object position

• Vary illumination using point source

• Developed by Woodham

B(P ) = ρ(P )N(P ).V 1

I(x, y) = kB(x, y)

= kρ(x, y)N(x, y).V 1

= g(x, y).V 1



Applications : Photometric Stereo

V =


V 1

T

V 2
T

...

V n
T


i(x, y) = {I1(x, y), · · · , In(x, y)}T

i(x, y) = Vg(x, y)



Triangulation



Photometric Stereo



Photometric Stereo

Strong Assumptions

• Assumptions used in original method

• Orthographic Camera

• Lambertian surface

• Lighting is
• point source
• at infinity

• Calibrated Light Sources (known direction)

• Newer methods overcome/relax some or all assumptions

• Depth + Photometric + Learning



Camera Model : Orthographic Projection

Orthographic Projection Model

• Projects object points onto plane along direction of optical axis

• Also known as parallel projection

• Drastic approximation x = X! (not fX
Z )

• Useful as linear methods are applicable



Applications : Photometric Stereo

• Take care of shadows

• Albedo can be measured since ||N || = 1

• N(x, y) = 1
||g(x,y)||g(x, y)

• Offers a check for correctness



Applications : Photometric Stereo

Height map recovered by careful integration of normal field



Specular Surfaces

• Traditional methods have treated specularities as a problem

• Specularities are much harder to model correctly

• Model a surface as specular + diffuse component

• New methods try to separate out specular and diffuse component

• We shall not study specularities in this course



Specular Surfaces

Can manipulate specular and diffuse components independently



Radiometry

• General radiometry is very complex

• Many simplifying assumptions can be made

• Radiometric ideas applied to both
• shape reconstruction
• recognition

• Classical approach to shape is shape from shading

• Newer approaches combine depth and photometric measurements

• Recent developments using deep learning

• Developments in rendering: Neural Radiance Fields (NeRF)



In the next few slides, we’ll do a bit of elementary linear algebra and
least squares estimation



Linear Estimation

• Linear models are
• simple
• powerful
• easy to interpret

• Spectral representation (eigen decomposition)

• Many efficient solvers available

• Exploit sparsity for large-scale systems



Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


Row Space

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


Column Space

Vector Space Representations

• Ax = λx (column space, image/range space)

• ATx = λ
′
x (row space)

• SVD: Unified spectral representation



Linear Least Squares

• Ax = 0

• Rank of A?

• Scale of x? Usually fix ||x|| = 1

• Rank of A + εN?

• No exact fit for noisy obs

• Best solution: least squares (why?)

• Minimise C = ||Ax||2

• ||Ax||2 = (Ax)
T

(Ax)

• Assume x is an eigen vector, what is C?

• Why should solution x be an eigen vector?

• Properties of eigen vectors of ATA?

• Good exercise to prove x is smallest eigen vector

• Hint: Write x = Σiαivi (for eigen vectors v)



Linear Least Squares

x = arg min
x
||Ax− b||2

= arg min
x

(Ax− b)
T

(Ax− b)

Taking derivative wrt x etc.

x = (ATA)−1AT b (check)

• Ax = b

• Existence of solutions?

• Least squares for over-determined soe

• Minimise C = ||Ax− b||2

• Scale of x?

• A† = (ATA)−1AT (pseudo-inverse)

• When A is square? rank-deficient?

• Warning: Never solve directly! Why?



Singular Value Decomposition

• Powerful result used extensively in many areas

• Generalises spectral theorem to non-square matrices

• Provides a good interpretation of matrix properties

• Very useful approach to solving linear problems in vision

• Will repeatedly encounter the SVD in many approaches

• Stable algorithms exists, eg. matlab svd()



Singular Value Decomposition

For an m× n matrix A, there exists a factorisation

A = UΣV ?

• U and V are unitary of size m×m and n× n resp.

• V ? denotes the Hermitian of V

• Unitary matrices are such that UU? = U?U = I

• SVD is a generalisation of “eigendecomposition”

• U and V denote the eigenvectors of AA? and A?A

• Σ is a diagonal matrix containing the singular values of A

• Decomposition such that singular values are ordered

Σ = diag(σ1, σ2, · · · , σk), σ1 ≥ σ2 ≥ · · · ≥ σk



Low Rank Approximation

A = UΣV T

=
∑
i

σiuiv
T
i

Eckart-Young-Mirsky Theorem

• Say we want Ak s. t. rank(Ak) = k < rank(A)

• How do we pick Ak?

• Ak closest to A

• Minimise ||A−Ak||F
• Solution: Ak =

∑k
i=1 σiuiv

T
i

• Very commonly used approach

• Each uiv
T
i is rank-1

• Like peeling an onion

• A = σ1u1v
T
1 + (σ2u2v

T
2 + (σ3u3v

T
3 + · · · ))
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Algebraic Line Fitting

• yi = mxi + c

• Cost to minimise :
∑
i(yi −mxi − c)2

• Familiar slope-intercept form

• Lacks geometric invariance

• Can be highly unstable



• Error measured perp. to fitted line

• Error is geometrically invariant to choice of co-ordinates

• Cost to minimise :
∑

i(yi−mxi−c)2
1+m2

• Easier to consider form : ayi + bxi + c = 0



Cost :∑
i(ayi + bxi + c)2 ⇒

∑
i {(yi, xi, 1).(a, b, c)}2

Consider form :
y1 x1 1
y2 x2 1

· · ·
yN xN 1


M

pab
c

 = 0

• Problem equivalent to Mp = 0

• Boils down to minp ||Mp||2

• Determine null-space using SVD

• Solution is rotationally invariant



Least Squares Formulations

Ax = b

Ordinary Least Squares

Ax = b + ∆b

arg min x ||Ax− b||2

• Assume error only in rhs b

• x = (ATA)−1AT b

• Familiar pseudo-inverse form

• Biased, low variance

Total Least Squares

(A + ∆A)x = b + ∆b

⇒ [A| − b]

[
x
1

]
= 0

• Error in both lhs and rhs

• Solve using the ‘homogenous’
form

• Solution provided by SVD

• Unbiased, high variance



Condition number of a matrix

Vector Norm

• Consider vector norm ||x||
• Triangle inequality: ||x + y|| ≤ ||x||+ ||y||
• What do these norms mean?

• `2
• `1
• `∞
• `p(0 < p < 1)



Condition number of a matrix

Matrix Norm

• Induce a matrix norm for A

• ||A|| = sup||x||6=0
||Ax||
||x||

• Is ||A + B|| < ||A||+ ||B||?
• For some matrix norms ||AB|| < ||A||||B||
• Also elementwise norms etc. (Frobenius)



Condition number of a matrix

Condition number

• Condition number κ(A) measures “sensitivity”

• How do quantities change when we perturb measurements?

• Consider A−1 and Ax = b

• Finite-precision computations

• Unstable solutions for large κ(A)

• κ(A) for singular matrices is ∞
• For `2 norm κ(A) = σmax(A)

σmin(A)

• Lesson: Algebraic rank is not sufficient for stable computation



The following slides sketch out methods for integrating normals to get
surfaces.
We will not be covering this material this semester.
You are not required to know this material, but I’ve left it here if
anyone is interested.



Applications : Photometric Stereo

Height map recovered by careful integration of normal field



Applications : Photometric Stereo

• Height map recovered by careful integration of normal field

• Assumes orthographic projection



Camera Model : Orthographic Projection

Orthographic Projection Model

• Projects object points onto plane along direction of optical axis

• Also known as parallel projection

• Drastic approximation x = X!

• Useful as linear methods are applicable



3D Reconstruction from Normals

Two approaches

• Discrete integration

• Global solution



Discrete Integration

Reconstruct Z(x, y) ∈ R3 given gradient field

K(p) : R2 → R2

p = (x, y)

K(p) = grad(Z(x, y))

= (p(x, y), q(x, y)) =

(
∂Z

∂x
,
∂Z

∂y

)

Solve using integration

Integrate

• locally?

• globally?



Map normals to gradient field : (p, q)

curl :
∂p

∂y
− ∂q

∂x

div :
∂p

∂x
+
∂q

∂y

General solution

min
Z

∫ ∫ (
(Zx − p)2 + (Zy − q)2

)
dxdy



• Start integration from origin

• Which path should we choose?

• Under noise, path are not consistent

• Local integration leads to problems



• Consistent paths

• All loops should integrate to
zero

• Vector field is integrable

Requirement

For continuous partial derivatives
If

∂Kx

∂y
=
∂Ky

∂x

then Z satisfies integrability

Equivalent to
∂2Z

∂x∂y
=

∂2Z

∂y∂x



∂2Z

∂x∂y
=

∂2Z

∂y∂x Z = F−1
(
−j uF(p) + vF(q)

u2 + v2

)
Integrability

• Noisy gradients do not satisfy requirement

• Solution: Project gradients onto “integrable” basis

• Frankot-Chellappa algorithm (1988)

• We will not study the proof

• Modern interpretations use other compact bases (wavelets)


