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Theorems About Power Series

Consider a power series,

f(x) =
∞

∑

n=0

anxn , (1)

where the an are real coefficients and x is a real variable. There exists a real
non-negative number R, called the radius of convergence such that

1. If R = 0, then the series in eq. (1) converges for x = 0 and diverges for any
non-zero real value of x.

2. If R = ∞, then the series in eq. (1) converges absolutely for any (finite) real
number x.

3. If 0 < R < ∞, then the series in eq. (1) converges absolutely for every real
number x such that |x| < R, and diverges for every real number x such that
|x| > R.

In many cases, R can be determined by the ratio test, which yields∗

1

R
= lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

. (2)

Examples of the three possible cases exhibited above are:

(i)
∞

∑

n=0

n! xn , (ii)
∞

∑

n=0

xn

n!
, (iii)

∞
∑

n=0

xn .

In particular, using eq. (2), it follows that for the three series listed above, R = 0
for series (i), R = ∞ for series (ii) and R = 1 for series (iii).

The interval of convergence for the series in eq. (1) is defined to be the set of
all possible values of x for which the series converges. Note that if if 0 < R < ∞,
then the convergence properties of eq. (1) for x = R and x = −R are not specified,

∗If the limit in eq. (2) does not exist, then a different test, called the root test, can be used
to determine the radius of convergence. The root test yields 1/R = limn→∞ |an|

1/n. If this limit
fails to exist, one can modify the test slightly by employing the subsequence obtained from the
{an} for which the root test yields the largest possible value in the limit of n → ∞. If both
the ratio test and the root test apply, one can show that they both yield the same value for the
radius of convergence R.
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and must be determined by other means. Thus, the interval of convergence may
or may not include one or both of the endpoints of the interval −R ≤ x ≤ R.
The possible convergence properties at an endpoint are: absolute convergence,
conditional convergence or divergence.

Theorem 1: The power series f(x) =
∑∞

n=0
anxn is absolutely convergent for

|x| < R, where R is the radius of convergence. Moreover,
∑∞

n=0
anx

n is continuous
and infinitely differentiable within the interval of convergence, |x| < R.

Proof: The convergence properties of the power series are a consequence of the
ratio test. The proof of continuity and differentiability can be found in the refer-
ences at the end of this note.

Theorem 2: If the power series f(x) =
∑∞

n=0
anx

n is convergent at x = R,
then it is a continuous function within the interval of convergence including the

endpoint at x = R. In this case, we have

f(R) = lim
x→R−

∞
∑

n=0

anxn =
∞

∑

n=0

lim
x→R−

anx
n =

∞
∑

n=0

anRn ,

where limx→R− means that x approaches R from the left, i.e. from inside the
interval of convergence, |x| < R. That is, in this case it is permissible to inter-
change the order of the limit and the infinite sum. Likewise, if the power series
is convergent at x = −R, then it is a continuous function within the interval of
convergence including the endpoint at x = −R. In this case, we have

f(−R) = lim
x→−R+

∞
∑

n=0

anxn =

∞
∑

n=0

lim
x→−R+

anx
n =

∞
∑

n=0

(−1)nanR
n ,

where limx→−R+ means that x approaches R from the right, i.e. from inside the
interval of convergence, |x| < R.

Theorem 2 is known as Abel’s theorem. As an example of its application,
consider the power series,

ln(1 + x) =

∞
∑

n=1

(−1)n+1
xn

n
, |x| < 1 . (3)

In this case, the radius of convergence is R = 1. Moreover, if we set x = 1 above,
the resulting series is conditionally convergent (as a consequence of the alternating
series test). Thus, the power series for ln(1 + x) is continuous at x = 1, which
allows us to conclude that:

ln 2 =

∞
∑

n=1

(−1)n+1

n
.

2



The converse of Abel’s theorem is sometimes false. As an example, we consider
the infinite geometric series,

1

1 + x
=

∞
∑

n=0

(−1)nxn . (4)

Setting x = 1 above yields the divergent series 1−1+1−1+1−1+· · · . Hence, the
conditions of Abel’s theorem are not satisfied, in which case we cannot conclude
that

∑∞

n=0
(−1)nxn is continuous at x = 1. In particular, for x = 1, the left hand

side of eq. (4) yields 1

2
. Although one can make a case for assigning 1

2
to the series

1− 1 + 1− 1 + 1− 1 + · · · , the latter series is clearly not convergent according to
the standard mathematical definition of convergence.

Theorem 3: Consider a power series f(x) =
∑∞

n=0
anxn with radius of conver-

gence R. Then, term-by-term differentiation and integration of the power series
is permitted, and does not change the radius of convergence. That is,

df

dx
=

d

dx

∞
∑

n=0

anxn =
∞

∑

n=0

d

dx
anx

n =
∞

∑

n=1

nanxn−1 , |x| < R , (5)

∫

f(x)dx =

∫

dx
∞

∑

n=0

anxn =
∞

∑

n=0

∫

dxanxn =
∞

∑

n=0

anx
n+1

n + 1
. |x| < R . (6)

In particular, for values of x within the interval of convergence, |x| < R, it is
permissible to interchange the order of the infinite summation and the differen-
tiation or integration. This feature is one of the reasons that power series are so
nice—they behave for the most part like ordinary polynomials.†

Proof: This theorem is a simple consequence of the ratio test. Note that the
ratio test is inconclusive at the endpoints of the interval of convergence, so that
the convergence properties at x = R and x = −R must be separately investigated.

Although a power series, its derivative and its integral possess the same radius
of convergence, this does not mean that they have the same interval of convergence.
In particular, the intervals of convergence of the power series representations of
f(x), df/dx and

∫

f(x)dx can differ at the endpoints of the interval of convergence.
In general, by differentiating a function defined by a power series with radius
of convergence R, we may lose convergence at an endpoint of the interval of
convergence of f(x). In contrast, by integrating a function defined by a power
series with radius of convergence R, we may gain convergence at an endpoint of
the interval of convergence of f(x). On the other hand, the series comparison

†In general, if f(x) =
∑

n fn(x) is a pointwise convergent sum, it may happen that the
integral of the infinite sum is not equal to the infinite sum of the integrals, and/or the derivative
of the infinite sum is not equal to the infinite sum of the derivatives. However, this cannot
happen for a power series when x lies within the interval of convergence.
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test implies if f(x) diverges at an endpoint, then df/dx must also diverge at
that endpoint, whereas if f(x) converges at an endpoint, then

∫

f(x)dx must also
converge at that endpoint.

The following two examples are instructive. First, we define the dilogarithm

Li2(x) via the power series,

Li2(x) ≡
∞

∑

n=1

xn

n2
, |x| ≤ 1 . (7)

The ratio test implies that the radius of convergence is R = 1, and the p-series
test implies that the power series converges absolutely at both endpoints of the
interval of convergence. Taking a derivative of eq. (7) yields

d

dx
Li2(x) =

d

dx

∞
∑

n=1

xn

n2
=

∞
∑

n=1

1

n2

d

dx
xn =

∞
∑

n=1

xn−1

n
, |x| < 1 . (8)

At x = −1 the resulting series is the alternating harmonic series which converges,
whereas at x = 1 the resulting series is the harmonic series which diverges. Using
Abel’s theorem, we can extend the domain of validity of eq. (8) to include the
endpoint x = −1 (but not the endpoint x = 1). That is, even though the series
given by eq. (7) is convergent at x = 1, the series representation of the derivative
of Li2(x) is divergent at x = 1. Using eqs. (3) and (8), it follows that:

d

dx
Li2(x) = −

ln(1 − x)

x
. (9)

Strictly speaking, this result is only valid in the range −1 ≤ x < 1.
For our second example, we start with the infinite geometric series given in

eq. (4), which diverges at both endpoints of the interval of convergence. Comput-
ing the integral of eq. (4) yields:

∫

dx

1 + x
= ln(1 + x) =

∫

dx

∞
∑

n=0

(−1)nxn =

∞
∑

n=0

(−1)n

∫

xn dx

=
∞

∑

n=0

(−1)n
xn+1

n + 1
=

∞
∑

n=1

(−1)n−1
xn

n
, |x| < 1 . (10)

At x = +1 the resulting series is the alternating harmonic series which converges,
whereas at x = −1 the resulting series is the negative of the harmonic series which
diverges. Using Abel’s theorem, we can extend the domain of validity of eq. (10)
to include the endpoint x = 1 (but not the endpoint x = −1). That is, even
though the infinite geometric series given in eq. (4) is divergent at x = 1, the
series representation of the integral of 1/(1 + x) is convergent at x = 1.
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Theorem 4: Given two power series with radii of convergence R1 and R2,
respectively, i.e.

f1(x) =

∞
∑

n=0

anxn , |x| < R1 , (11)

f2(x) =

∞
∑

n=0

bnxn , |x| < R2 , (12)

then the sum and product of the two power series are given respectively by:

f1(x) + f2(x) =

∞
∑

n=0

(an + bn)xn , |x| < R , (13)

f1(x)f2(x) =

∞
∑

n=0

n
∑

k=0

akbn−kx
n , |x| < R , (14)

where the radius of convergence of the sum and of the product is at least as large
as the minimum of R1 and R2, i.e. R ≥ min{R1, R2}. The subtraction of two series
is then defined simply by changing the signs of all the bn above before adding the
two series. The division of the two series, f1(x)/f2(x), can be performed if and
only if b0 6= 0. Assuming that this condition holds,

f1(x)

f2(x)
=

∞
∑

n=0

cnx
n , |x| < R ′ , (15)

where the radius of convergence satisfies R ′ ≥ min{R1, R2, x0}, with x0 identified
as the zero of f2(x) nearest to x = 0. The coefficients cn in eq. (15) are determined
recursively using:

c0 =
a0

b0

, cn =
1

b0

[

an −
n

∑

k=1

bkcn−k

]

for n = 1, 2, 3, . . . .

In the generic case, R = min{R1, R2} and R ′ = min{R1, R2, x0}. However, in
special cases the radius of convergence may be larger. Here is one such example:

1

1 − z
=

∞
∑

n=0

zn , |z| < 1 , (16)

−z

(2 − z)(1 − z)
=

1

1 − 1

2
z
−

1

1 − z
=

∞
∑

n=0

zn

(

1

2n
− 1

)

, |z| < 1 , (17)

have radii of convergence R1 = R2 = 1. Nevertheless, the sum of the two series
defined in eqs. (16) and (17) has a radius of convergence R = 2 > min{R1, R2},

1

1 − 1

2
z

=
∞

∑

n=0

(z

2

)n

, |z| < 2 .
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Theorem 5: The power series representation of a function, f(x) =
∑∞

n=0
anx

n,
with a non-zero radius of convergence |x| < R, is unique.

Proof: This is a consequence of Taylor’s theorem in calculus, which provides an
explicit formula for the coefficients of a power series,

an =
1

n!

dnf

dxn

∣

∣

∣

∣

∣

x=0

.
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