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 A Matrix Proof of Newton's Identities

 DAN KALMAN
 American University

 Washington, DC 20016-8050

 Newton's identities relate sums of powers of roots of a polynomial with the coeffi-
 cients of the polynomial. They are generally encountered in discussions of symmetric
 functions (see [4,9]): a polynomial's coefficients are symmetric functions of the roots,
 as is the sum of the kth powers of those roots.

 Newton's identities also have a natural expression in the context of matrix algebra,
 where the trace of the kth power of a matrix is the sum of the ktth powers of the
 eigenvalues. In this setting, Newton's identities can be derived as a simple conse-
 quence of the Cayley-Hamilton theorem. Presenting that derivation is the purpose of
 this note.

 There are a variety of derivations for Newton's identities in the literature.
 Berlekamp's derivation [2] using generating function methods is short and elegant,
 and Mead presents a very interesting argument [7] using a novel notation. In yet
 another approach [1], Baker uses differentiation to obtain a nice recursion. Eidswick's
 derivation [3] uses a related application of logarithmic differentiation. All of these
 proofs are elementary and understandable, but they involve manipulations or concepts
 that might make them a bit forbidding to students. In contrast, the proof presented
 here uses only methods that would be readily accessible to most linear algebra
 students.

 Interestingly, the matrix interpretation of Newton's identities is familiar in the
 linear algebra literature, providing a means of computing the characteristic polynomial
 of a matrix in terms of the traces of the powers of the matrix ([1, 8]). However, using
 the matrix setting to derive Newton's identities doesn't seem to be well known.

 Let p(x) = xn + a,n,- lx-1 + * +ao have roots rj, j = 1.., n. Define
 n

 kk Sk- E ri
 j=l

 Newton's identities are

 Sk + a,,1lSk_l + +aosk-n = 0 (k > n)

 Sk + an-ISk-1 + +an-k+l sI = -kan-k (1 < k < n)
 Now let C be an n X n matrix with characteristic polynomial equal to p. For

 example, C might be

 0 1 0 0. 0
 O 0 1 0

 O O 0 1

 -aO -al -a2 .. -a

 the companion matrix of p ([6]). Then the roots of p are the eigenvalues of C, and
 more generally, the k th powers of the roots of p are the eigenvalues of C k.
 Accordingly, we observe that Sk is the trace of C k, written tr(C k). Recall that the
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 trace of a matrix is at once the sum of the eigenvalues and the sum of the diagonal
 entries. In particular, the trace operation is linear: tr(agA + 3B) = ae tr(A) + 3 tr(B).

 Now for k > n, using the trace formulation, Newton's identity becomes

 tr(Ck) + an1Itr(Ck-i) + - +aotr(Ck-n) =0
 and since the trace function is linear, we can rewrite this as

 tr(Ck + an__ Ck-I + --- +aoCk-l) = 0, or tr(Ck-lp(C)) = 0.

 Thus, the k > n case follows immediately from the Cayley-Hamilton theorem, which
 says that p(C) = 0.

 For 1 < k < n, the trace version of Newton's identity is

 tr(Ck) + an1Itr(Ck-1) + +an-k+ltr(C) = -ka1-k
 which can again be rewritten as

 tr(Ck + an_ Ck-I + --- +an-k+l C) = -kank.

 For reasons that will be clear later, we modify this slightly, to

 tr(Ck + an-,1Ck-I + -- +a,-k+l C + an-k I) = (n - k)a,,1k (1)

 This identity can also be derived from the Cayley-Hamilton theorem, in a slightly
 different way. As is well known, a real number r is a root of a real polynomial p(x) if
 and only if (x -r) is a factor of p(x), and the complimentary factor can be
 determined using synthetic division. This situation can be mimicked exactly using
 matrices: let X = xl, and divide p(X) by X - C using synthetic division. Since
 p(C) = 0, the division terminates without remainder, providing the factorization

 p(X) = (X-C) [XnI + (C + an-1I)X 2 + (C2 + an-IC + an-2 I)Xn3

 + + (cn-1 + an-IC n2 + *. +a11)I]
 (see [5]).

 To relate this to equation (1), we will want to introduce the trace operation.
 Unfortunately, the trace does not relate well to matrix products, so it is necessary to
 eliminate the factor of (X - C) on the right. Fortunately, as long as x is not an
 eigenvalue of C, we know that (xl - C) = (X - C) is non-singular, so we can write

 (X- C)-1 (X) =Xn-1 + (C + an1I)Xn2 + (C2 + anC + an-2 I)X 3 +
 + (c n- + a Cn-2 + --- +a11)I.

 Taking the trace of each side then leads to

 tr[( X-C) 1p( X)] = nx`1- + tr(C + an__ I) xn-2 + (2)

 + tr(Cn1 + an-C n2 + *n +aj1)
 because tr(I)= n and tr(XkA) = tr(x kIA) = xk tr( A) for any matrix A.

 We will next show that the left side of this equation is none other than p '(x). Then,
 comparing coefficients on either side will complete the proof. Indeed, equating the
 coefficient of Xn-k-i in p'(x) with the corresponding coefficient on the right side of
 equation (2) gives

 (n-k)ank = tr(Ck + an_ Ck-I + -- +an-k+lC + an-k I)

 which is exactly the same as equation (1).
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 So, consider A = (X - C)-1p(X). Observe that p(X) = p(xI) = p(x)I, so we can
 equally well write A = p( x)( xl - C- . This shows that

 tr( A) = p( x)tr( xl-C) 1.

 Now the trace of any matrix is the sum of its eigenvalues (with multiplicities as in the
 characteristic polynomial). And the eigenvalues of (xl - C)-1 are simply the fractions
 1/(x -,r), l/(x -r2),, 1/(x- rn). This shows

 tr( A) =p(x) X-r + x-r + +x-,)

 which is immediately recognizable as the derivative p'(x) (using the fact that
 p(x) = (x - rl)(x - r2) .. (x- rn)). This completes the proof.
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 Boxes for Isoperimetric Triangles

 JOHN E. WETZEL
 University of Illinois at Urbana-Champaign

 Urbana, IL 61801

 Introduction A rectangular region covers a family of curves if it contains a
 congruent copy of each curve in the family. We call such a region a box for the family.
 In this note we answer two questions concerning boxes for the familygYof all triangles
 of perimeter two:

 (1) Among all boxes for 9 which has least area?
 (2) Among all boxes for J of prescribed shape, which has least area?

 Some results are known about triangular covers for 9 In [8] we found the side of
 the smallest equilateral triangle that can cover 9' but the smallest triangular covers for
 Wof other shapes remain unknown. With Furedi in [5], we found the smallest triangle
 (without regard to shape) that can cover Y7 and we showed somewhat surprisingly that
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