			Extensions 000
_			

A Tutorial on Hidden Markov Models by Lawrence R. Rabiner in Readings in speech recognition (1990)

Marcin Marszałek

Visual Geometry Group

16 February 2009

Figure: Andrey Markov

Introduction •00000	Forward-Backward Procedure	Viterbi Algorithm 000	Baum-Welch Reestimation	Extensions 000
Signals a	and signal models			

- Real-world processes produce signals, i.e., observable outputs
 - discrete (from a codebook) vs continous
 - stationary (with const. statistical properties) vs nonstationary
 - pure vs corrupted (by noise)
- Signal models provide basis for
 - signal analysis, e.g., simulation
 - signal processing, e.g., noise removal
 - signal recognition, e.g., identification
- Signal models can be
 - deterministic exploit some known properties of a signal
 - statistical characterize statistical properties of a signal
- Statistical signal models
 - Gaussian processes
 - Poisson processes
- Markov processes
- Hidden Markov processes

Introduction •00000	Forward-Backward Procedure	Viterbi Algorithm 000	Baum-Welch Reestimation	Extensions 000
Signals and signal models				

- Real-world processes produce signals, i.e., observable outputs
 - discrete (from a codebook) vs continous
 - stationary (with const. statistical properties) vs nonstationary
 - pure vs corrupted (by noise)

Assumption

Signal can be well characterized as a parametric random process, and the parameters of the stochastic process can be determined in a precise, well-defined manner

- $\bullet\,$ deterministic exploit some known properties of a signal
- statistical characterize statistical properties of a signal
- Statistical signal models
 - Gaussian processes
 - Poisson processes
- Markov processes
- Hidden Markov processes

Figure: A Markov chain with 5 states and selected transitions

- *N* states: *S*₁, *S*₂, ..., *S*_N
- In each time instant t = 1, 2, ..., T a system changes (makes a transition) to state q_t

- ∢ ≣ ▶

Introduction Forward-Backward Procedure Viterbi Algorithm Baum-Welch Reestimation Extensions Discrete (observable) Markov model Viterbi Algorithm No No No

• For a special case of a first order Markov chain

$$P(q_t = S_j | q_{t-1} = S_i, t_{t-2} = S_k, ...) = P(q_t = S_j | q_{t-1} = S_i)$$

• Furthermore we only assume processes where right-hand side is time independent – const. state transition probabilities

$$a_{ij} = P(q_t = S_j | q_{t-1} = S_j) \qquad 1 \le i, j \le N$$

where

 Introduction
 Forward-Backward Procedure
 Viterbi Algorithm
 Baum-Welch Reestimation
 Extensions

 Discrete
 hidden
 Markov
 model
 (DHMM)

Figure: Discrete HMM with 3 states and 4 possible outputs

- An observation is a probabilistic function of a state, i.e., HMM is a doubly embedded stochastic process
- A DHMM is characterized by
 - N states S_j and M distinct observations v_k (alphabet size)
 - State transition probability distribution A
 - Observation symbol probability distribution B
 - Initial state distribution π

• We define the DHMM as $\lambda = (A, B, \pi)$

•
$$A = \{a_{ij}\}$$
 $a_{ij} = P(q_{t+1} = S_j | q_t = S_i)$ $1 \le i, j \le N$
• $B = \{b_{ik}\}$ $b_{ik} = P(O_t = v_k | q_t = S_i)$ $1 \le i \le N$
• $\pi = \{\pi_i\}$ $\pi_i = P(q_1 = S_i)$ $1 \le i \le N$

•
$$\pi = \{\pi_i\}$$
 $\pi_i = P(q_1 = S_i)$

• This allows to generate an observation seq. $O = O_1 O_2 ... O_T$

- Set t = 1, choose an initial state $q_1 = S_i$ according to the initial state distribution π
- 2 Choose $O_t = v_k$ according to the symbol probability distribution in state S_i , i.e., b_{ik}
- **③** Transit to a new state $q_{t+1} = S_i$ according to the state transition probability distibution for state S_i , i.e., a_{ii}

• Set
$$t = t + 1$$
,

if t < T then return to step 2

 Introduction 00000
 Forward-Backward Procedure 00000
 Viterbi Algorithm 000
 Baum-Welch Reestimation 000
 Extensions 000

 Three basic problems for HMMs

Evaluation Given the observation sequence $O = O_1 O_2 ... O_T$ and a model $\lambda = (A, B, \pi)$, how do we efficiently compute $P(O|\lambda)$, i.e., the probability of the observation sequence given the model

Recognition Given the observation sequence $O = O_1 O_2 ... O_T$ and a model $\lambda = (A, B, \pi)$, how do we choose a corresponding state sequence $Q = q_1 q_2 ... q_T$ which is optimal in some sense, i.e., best explains the observations

Training Given the observation sequence $O = O_1 O_2 ... O_T$, how do we adjust the model parameters $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$

・ 同 ト ・ ヨ ト ・ ヨ ト

- We need $P(O|\lambda)$, i.e., the probability of the observation sequence $O = O_1 O_2 \dots O_T$ given the model λ
- So we can enumerate every possible state sequence $Q = q_1 q_2 ... q_T$
- For a sample sequence Q

$$P(O|Q,\lambda) = \prod_{t=1}^{T} P(O_t|q_t,\lambda) = \prod_{t=1}^{T} b_{q_tO_t}$$

• The probability of such a state sequence Q is

$$P(Q|\lambda) = P(q_1) \prod_{t=2}^{T} P(q_t|q_{t-1}) = \pi_{q_1} \prod_{t=2}^{T} a_{q_{t-1}q_t}$$

• Therefore the joint probability

$$P(O, Q|\lambda) = P(Q|\lambda)P(O|Q, \lambda) = \pi_{q_1} \prod_{t=2}^{T} a_{q_{t-1}q_t} \prod_{t=1}^{T} b_{q_tO_t}$$

• By considering all possible state sequences

$$P(O|\lambda) = \sum_{Q} \pi_{q_1} b_{q_1 O_1} \prod_{t=2}^{T} a_{q_{t-1}q_t} b_{q_t O_t}$$

- Problem: order of $2TN^T$ calculations
 - N^T possible state sequences
 - about 2T calculations for each sequence

Introduction	Forward-Backward Procedure	Viterbi Algorithm	Baum-Welch Reestimation	Extensions
000000	00●00	000		000
Forward	procedure			

 We define a forward variable α_j(t) as the probability of the partial observation seq. until time t, with state S_j at time t

$$\alpha_j(t) = P(O_1 O_2 \dots O_t, q_t = S_j | \lambda)$$

• This can be computed inductively

$$\alpha_j(1) = \pi_j b_{jO_1} \qquad 1 \le j \le N$$

$$\alpha_j(t+1) = \left(\sum_{i=1}^N \alpha_i(t) a_{ij}\right) b_{jO_{t+1}} \qquad 1 \le t \le T-1$$

• Then with N^2T operations:

$$P(O|\lambda) = \sum_{i=1}^{N} P(O, q_T = S_i|\lambda) = \sum_{i=1}^{N} \alpha_i(T)$$

Introduction	Forward-Backward Procedure	Viterbi Algorithm	Baum-Welch Reestimation	Extensions
000000	०००●०	000		000
Forward	procedure			

Figure: Operations for computing the forward variable $\alpha_j(t+1)$

Figure: Computing $\alpha_j(t)$ in terms of a lattice

Introduction	Forward-Backward Procedure	Viterbi Algorithm	Baum-Welch Reestimation	Extensions
000000	0000●	000		000
Backwar	d procedure			

Figure: Operations for computing the backward variable $\beta_i(t)$

• We define a backward variable $\beta_i(t)$ as the probability of the partial

$$\beta_i(t) = P(O_{t+1}Ot + 2...O_T | q_t = S_i, \lambda)$$

This can be computed inductively as well

$$eta_i(T) = 1 \qquad 1 \leq i \leq N$$

 $eta_i(t-1) = \sum_{j=1}^N a_{ij} b_{jO_t} eta_j(t) \qquad 2 \leq t \leq T$

	ing the hidden at			
000000	00000	●00	000	000
Introduction	Forward-Backward Procedure	Viterbi Algorithm	Baum-Welch Reestimation	Extensions

Uncovering the hidden state sequence

- Unlike for evaluation, there is no single "optimal" sequence
 - Choose states which are individually most likely (maximizes the number of correct states)
 - Find the single best state sequence (guarantees that the uncovered sequence is valid)

• The first choice means finding $\operatorname{argmax}_i \gamma_i(t)$ for each t, where

$$\gamma_i(t) = P(q_t = S_i | O, \lambda)$$

• In terms of forward and backward variables

$$\begin{split} \gamma_i(t) &= \frac{P(O_1...O_t, q_t = S_i | \lambda) P(O_{t+1}...O_T | q_t = S_i, \lambda)}{P(O|\lambda)} \\ \gamma_i(t) &= \frac{\alpha_i(t)\beta_i(t)}{\sum_{j=1}^N \alpha_j(t)\beta_j(t)} \end{split}$$

Introduction 000000	Forward-Backward Procedure	Viterbi Algorithm 0●0	Baum-Welch Reestimation	Extensions 000
Viterbi algorithm				

- Finding the best single sequence means computing $\operatorname{argmax}_{Q} P(Q|O, \lambda)$, equivalent to $\operatorname{argmax}_{Q} P(Q, O|\lambda)$
- The Viterbi algorithm (dynamic programming) defines $\delta_j(t)$, i.e., the highest probability of a single path of length t which accounts for the observations and ends in state S_j

$$\delta_j(t) = \max_{q_1, q_2, ..., q_{t-1}} P(q_1 q_2 ... q_t = j, O_1 O_2 ... O_t | \lambda)$$

By induction

$$\delta_j(1) = \pi_j b_{jO_1}$$
 $1 \le j \le N$
 $\delta_j(t+1) = \left(\max_i \delta_i(t) a_{ij}\right) b_{jO_{t+1}}$
 $1 \le t \le T-1$

• With backtracking (keeping the maximizing argument for each *t* and *j*) we find the optimal solution

Introduction 000000	Forward-Backward Procedure	Viterbi Algorithm 00●	Baum-Welch Reestimation	Extensions 000
Backtracking				

Figure: Illustration of the backtracking procedure © G.W. Pulford

∃ ► < ∃ ►</p>

Introduction	Forward-Backward Procedure	Viterbi Algorithm	Baum-Welch Reestimation	Extensions
000000		000	●00	000
Estimation of HMM parameters				

- There is no known way to analytically solve for the model which maximizes the probability of the observation sequence
- We can choose $\lambda = (A, B, \pi)$ which locally maximizes $P(O|\lambda)$
 - gradient techniques
 - Baum-Welch reestimation (equivalent to EM)
- We need to define $\xi_{ij}(t)$, i.e., the probability of being in state S_i at time t and in state S_j at time t + 1

$$\begin{split} \xi_{ij}(t) &= P(q_t = S_i, q_{t+1} = S_j | O, \lambda) \\ \xi_{ij}(t) &= \frac{\alpha_i(t) a_{ij} b_{jO_{t+1}} \beta_j(t+1)}{P(O|\lambda)} = \\ &= \frac{\alpha_i(t) a_{ij} b_{jO_{t+1}} \beta_j(t+1)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_i(t) a_{ij} b_{jO_{t+1}} \beta_j(t+1)} \end{split}$$

Introduction Forward-Backward Procedure Viterbi Algorithm Baum-Welch Reestimation Extensions 000 Estimation of HMM parameters

Figure: Operations for computing the $\xi_{ij}(t)$

• Recall that $\gamma_i(t)$ is a probability of state S_i at time t, hence

$$\gamma_i(t) = \sum_{j=1}^N \xi_{ij}(t)$$

• Now if we sum over the time index t

• $\sum_{t=1}^{T-1} \gamma_i(t)$ = expected number of times that S_i is visited* = expected number of transitions from state S_i • $\sum_{t=1}^{T-1} \xi_{ij}(t)$ = expected number of transitions from S_i to S_j

Introduction	Forward-Backward Procedure	Viterbi Algorithm	Baum-Welch Reestimation	Extensions
000000		000	00●	000
Baum-W	/elch Reestimatio	on		

• Reestimation formulas

$$ar{\pi_i} = \gamma_i(1)$$
 $ar{s_{ij}} = rac{\sum_{t=1}^{T-1} \xi_{ij}(t)}{\sum_{t=1}^{T-1} \gamma_i(t)}$ $ar{s_{jk}} = rac{\sum_{O_t = v_k} \gamma_j(t)}{\sum_{t=1}^{T} \gamma_j(t)}$

- Baum et al. proved that if current model is $\lambda = (A, B, \pi)$ and we use the above to compute $\overline{\lambda} = (\overline{A}, \overline{B}, \overline{\pi})$ then either
 - $\bar{\lambda}=\lambda$ we are in a critical point of the likelihood function
 - $P(O|\overline{\lambda}) > P(O|\lambda)$ model $\overline{\lambda}$ is more likely
- If we iteratively reestimate the parameters we obtain a maximum likelihood estimate of the HMM
- Unfortunately this finds a local maximum and the surface can be very complex

Introduction 000000	Forward-Backward Procedure	Viterbi Algorithm 000	Baum-Welch Reestimation	Extensions ●00
Non-ergo	odic HMMs			

- Until now we have only considered ergodic (fully connected) HMMs
 - every state can be reached from any state in a finite number of steps

Figure: Ergodic HMM

- Left-right (Bakis) model good for speech recognition
 - as time increases the state index increases or stays the same
 - can be extended to parallel left-right models

Figure: Left-right HMM

Introduction 000000	Forward-Backward Procedure	Viterbi Algorithm 000	Baum-Welch Reestimation	Extensions 0●0		
Gaussian HMM (GMMM)						

- HMMs can be used with continous observation densities
- We can model such densities with Gaussian mixtures

$$b_{j\mathbf{0}} = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{0}, \mu_{jm}, \mathbf{U}_{jm})$$

• Then the reestimation formulas are still simple

$$\gamma_{t}(j, k) = \begin{bmatrix} \frac{\alpha_{t}(j) \beta_{t}(j)}{\sum\limits_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)} \end{bmatrix} \begin{bmatrix} \frac{c_{jk} \mathfrak{V}(\boldsymbol{O}_{t}, \boldsymbol{\mu}_{jk}, \boldsymbol{U}_{jk})}{\sum\limits_{m=1}^{M} c_{jm} \mathfrak{N}(\boldsymbol{O}_{t}, \boldsymbol{\mu}_{jm}, \boldsymbol{U}_{jm})} \end{bmatrix} \quad \bar{c}_{jk} = \frac{\sum\limits_{t=1}^{T} \gamma_{t}(j, k)}{\sum\limits_{t=1}^{T} \sum\limits_{k=1}^{M} \gamma_{t}(j, k)} \\ \bar{\boldsymbol{\mu}}_{jk} = \frac{\sum\limits_{t=1}^{T} \gamma_{t}(j, k) \cdot \boldsymbol{O}_{t}}{\sum\limits_{t=1}^{T} \gamma_{t}(j, k)} \quad \overline{\boldsymbol{U}}_{jk} = \frac{\sum\limits_{t=1}^{T} \gamma_{t}(j, k) \cdot (\boldsymbol{O}_{t} - \boldsymbol{\mu}_{jk})(\boldsymbol{O}_{t} - \boldsymbol{\mu}_{jk})'}{\sum\limits_{t=1}^{T} \gamma_{t}(j, k)}$$

Introduction 000000	Forward-Backward Procedure	Viterbi Algorithm 000	Baum-Welch Reestimation	Extensions 00●		
More fun						

- Autoregressive HMMs
- State Duration Density HMMs
- Discriminatively trained HMMs
 - maximum mutual information instead of maximum likelihood
- HMMs in a similarity measure
- Conditional Random Fields can loosely be understood as a generalization of an HMMs

Figure: Random Oxford fields © R. Tourtelot

• constant transition probabilities replaced with arbitrary functions that vary across the positions in the sequence of hidden states