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Signals and signal models

Real-world processes produce signals, i.e., observable outputs

discrete (from a codebook) vs continous
stationary (with const. statistical properties) vs nonstationary
pure vs corrupted (by noise)

Signal models provide basis for

signal analysis, e.g., simulation
signal processing, e.g., noise removal
signal recognition, e.g., identification

Signal models can be

deterministic – exploit some known properties of a signal
statistical – characterize statistical properties of a signal

Statistical signal models

Gaussian processes
Poisson processes

Markov processes
Hidden Markov processes
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Assumption

Signal can be well characterized as a parametric random
process, and the parameters of the stochastic process can be
determined in a precise, well-defined manner
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Discrete (observable) Markov model

Figure: A Markov chain with 5 states and selected transitions

N states: S1, S2, ...,SN

In each time instant t = 1, 2, ...,T a system changes
(makes a transition) to state qt

Marcin Marsza lek A Tutorial on Hidden Markov Models



Introduction Forward-Backward Procedure Viterbi Algorithm Baum-Welch Reestimation Extensions

Discrete (observable) Markov model

For a special case of a first order Markov chain

P(qt = Sj |qt−1 = Si , tt−2 = Sk , ...) = P(qt = Sj |qt−1 = Si )

Furthermore we only assume processes where right-hand side
is time independent – const. state transition probabilities

aij = P(qt = Sj |qt−1 = Sj) 1 ≤ i , j ≤ N

where

aij ≥ 0
N∑

j=1

aij = 1
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Discrete hidden Markov model (DHMM)

Figure: Discrete HMM with 3 states and 4 possible outputs

An observation is a probabilistic function of a state, i.e.,
HMM is a doubly embedded stochastic process

A DHMM is characterized by

N states Sj and M distinct observations vk (alphabet size)
State transition probability distribution A
Observation symbol probability distribution B
Initial state distribution π
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Discrete hidden Markov model (DHMM)

We define the DHMM as λ = (A,B, π)

A = {aij} aij = P(qt+1 = Sj |qt = Si ) 1 ≤ i , j ≤ N
B = {bik} bik = P(Ot = vk |qt = Si ) 1 ≤ i ≤ N

1 ≤ k ≤ M
π = {πi} πi = P(q1 = Si ) 1 ≤ i ≤ N

This allows to generate an observation seq. O = O1O2...OT

1 Set t = 1, choose an initial state q1 = Si according to the
initial state distribution π

2 Choose Ot = vk according to the symbol probability
distribution in state Si , i.e., bik

3 Transit to a new state qt+1 = Sj according
to the state transition probability distibution
for state Si , i.e., aij

4 Set t = t + 1,
if t < T then return to step 2
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Three basic problems for HMMs

Evaluation Given the observation sequence O = O1O2...OT and
a model λ = (A,B, π), how do we efficiently
compute P(O|λ), i.e., the probability of the
observation sequence given the model

Recognition Given the observation sequence O = O1O2...OT and
a model λ = (A,B, π), how do we choose a
corresponding state sequence Q = q1q2...qT which is
optimal in some sense, i.e., best explains the
observations

Training Given the observation sequence O = O1O2...OT , how
do we adjust the model parameters λ = (A,B, π) to
maximize P(O|λ)
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Brute force solution to the evaluation problem

We need P(O|λ), i.e., the probability of the observation
sequence O = O1O2...OT given the model λ

So we can enumerate every possible state sequence
Q = q1q2...qT

For a sample sequence Q

P(O|Q, λ) =
T∏

t=1

P(Ot |qt , λ) =
T∏

t=1

bqtOt

The probability of such a state sequence Q is

P(Q|λ) = P(q1)
T∏

t=2

P(qt |qt−1) = πq1

T∏
t=2

aqt−1qt
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Brute force solution to the evaluation problem

Therefore the joint probability

P(O,Q|λ) = P(Q|λ)P(O|Q, λ) = πq1

T∏
t=2

aqt−1qt

T∏
t=1

bqtOt

By considering all possible state sequences

P(O|λ) =
∑
Q

πq1bq1O1

T∏
t=2

aqt−1qtbqtOt

Problem: order of 2TNT calculations

NT possible state sequences
about 2T calculations for each sequence
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Forward procedure

We define a forward variable αj(t) as the probability of the
partial observation seq. until time t, with state Sj at time t

αj(t) = P(O1O2...Ot , qt = Sj |λ)

This can be computed inductively

αj(1) = πjbjO1 1 ≤ j ≤ N

αj(t + 1) =
( N∑

i=1

αi (t)aij

)
bjOt+1 1 ≤ t ≤ T − 1

Then with N2T operations:

P(O|λ) =
N∑

i=1

P(O, qT = Si |λ) =
N∑

i=1

αi (T )
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Forward procedure

Figure: Operations for
computing the forward
variable αj(t + 1)

Figure: Computing αj(t)
in terms of a lattice
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Backward procedure

Figure: Operations for
computing the backward
variable βi (t)

We define a backward
variable βi (t) as the
probability of the partial
observation seq. after time t, given state Si at time t

βi (t) = P(Ot+1Ot + 2...OT |qt = Si , λ)

This can be computed inductively as well

βi (T ) = 1 1 ≤ i ≤ N

βi (t − 1) =
N∑

j=1

aijbjOtβj(t) 2 ≤ t ≤ T
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Uncovering the hidden state sequence

Unlike for evaluation, there is no single “optimal” sequence

Choose states which are individually most likely
(maximizes the number of correct states)
Find the single best state sequence
(guarantees that the uncovered sequence is valid)

The first choice means finding argmaxi γi (t) for each t, where

γi (t) = P(qt = Si |O, λ)

In terms of forward and backward variables

γi (t) =
P(O1...Ot , qt = Si |λ)P(Ot+1...OT |qt = Si , λ)

P(O|λ)

γi (t) =
αi (t)βi (t)∑N
j=1 αj(t)βj(t)
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Viterbi algorithm

Finding the best single sequence means computing
argmaxQ P(Q|O, λ), equivalent to argmaxQ P(Q,O|λ)

The Viterbi algorithm (dynamic programming) defines δj(t),
i.e., the highest probability of a single path of length t which
accounts for the observations and ends in state Sj

δj(t) = max
q1,q2,...,qt−1

P(q1q2...qt = j ,O1O2...Ot |λ)

By induction

δj(1) = πjbjO1 1 ≤ j ≤ N

δj(t + 1) =
(

max
i
δi (t)aij

)
bjOt+1 1 ≤ t ≤ T − 1

With backtracking (keeping the maximizing argument for each
t and j) we find the optimal solution
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Backtracking

Figure: Illustration of the backtracking procedure c© G.W. Pulford
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Estimation of HMM parameters

There is no known way to analytically solve for the model
which maximizes the probability of the observation sequence

We can choose λ = (A,B, π) which locally maximizes P(O|λ)

gradient techniques
Baum-Welch reestimation (equivalent to EM)

We need to define ξij(t), i.e., the probability of being in state
Si at time t and in state Sj at time t + 1

ξij(t) = P(qt = Si , qt+1 = Sj |O, λ)

ξij(t) =
αi (t)aijbjOt+1βj(t + 1)

P(O|λ)
=

=
αi (t)aijbjOt+1βj(t + 1)∑N

i=1

∑N
j=1 αi (t)aijbjOt+1βj(t + 1)
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Estimation of HMM parameters

Figure: Operations for
computing the ξij(t)

Recall that γi (t) is a probability of state Si at time t, hence

γi (t) =
N∑

j=1

ξij(t)

Now if we sum over the time index t∑T−1
t=1 γi (t) = expected number of times that Si is visited∗

= expected number of transitions from state Si∑T−1
t=1 ξij(t) = expected number of transitions from Si to Sj
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Baum-Welch Reestimation

Reestimation formulas

π̄i = γi (1) āij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi (t)

b̄jk =

∑
Ot=vk

γj(t)∑T
t=1 γj(t)

Baum et al. proved that if current model is λ = (A,B, π) and
we use the above to compute λ̄ = (Ā, B̄, π̄) then either

λ̄ = λ – we are in a critical point of the likelihood function
P(O|λ̄) > P(O|λ) – model λ̄ is more likely

If we iteratively reestimate the parameters we obtain a
maximum likelihood estimate of the HMM

Unfortunately this finds a local maximum and the surface can
be very complex
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Non-ergodic HMMs

Until now we have only considered
ergodic (fully connected) HMMs

every state can be reached from
any state in a finite number of
steps

Figure: Ergodic HMM

Left-right (Bakis) model good for speech recognition

as time increases the state index increases or stays the same
can be extended to parallel left-right models

Figure: Left-right HMM

Figure: Parallel HMM
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Gaussian HMM (GMMM)

HMMs can be used with continous observation densities

We can model such densities with Gaussian mixtures

bjO =
M∑

m=1

cjmN (O,µjm,Ujm)

Then the reestimation formulas are still simple
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More fun

Autoregressive HMMs

State Duration Density HMMs

Discriminatively trained HMMs

maximum mutual information
instead of maximum likelihood

HMMs in a similarity measure

Conditional Random Fields can
loosely be understood as a
generalization of an HMMs

Figure: Random Oxford
fields c© R. Tourtelot

constant transition probabilities replaced with arbitrary
functions that vary across the positions in the sequence of
hidden states
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