A Tutorial on Hidden Markov Models by Lawrence R. Rabiner in Readings in speech recognition (1990)

Marcin Marszałek

Visual Geometry Group

16 February 2009

Figure: Andrey Markov

Signals and signal models

- Real-world processes produce signals, i.e., observable outputs
- discrete (from a codebook) vs continous
- stationary (with const. statistical properties) vs nonstationary
- pure vs corrupted (by noise)
- Signal models provide basis for
- signal analysis, e.g., simulation
- signal processing, e.g., noise removal
- signal recognition, e.g., identification
- Signal models can be
- deterministic - exploit some known properties of a signal
- statistical - characterize statistical properties of a signal
- Statistical signal models
- Gaussian processes
- Markov processes
- Poisson processes
- Hidden Markov processes

Signals and signal models

- Real-world processes produce signals, i.e., observable outputs
- discrete (from a codebook) vs continous
- stationary (with const. statistical properties) vs nonstationary
- pure vs corrupted (by noise)

Assumption

Signal can be well characterized as a parametric random process, and the parameters of the stochastic process can be determined in a precise, well-defined manner

- deterministic - exploit some known properties of a signal
- statistical - characterize statistical properties of a signal
- Statistical signal models
- Gaussian processes - Markov processes
- Poisson processes

Discrete (observable) Markov model

Figure: A Markov chain with 5 states and selected transitions

- N states: $S_{1}, S_{2}, \ldots, S_{N}$
- In each time instant $t=1,2, \ldots, T$ a system changes (makes a transition) to state q_{t}

Discrete (observable) Markov model

- For a special case of a first order Markov chain

$$
P\left(q_{t}=S_{j} \mid q_{t-1}=S_{i}, t_{t-2}=S_{k}, \ldots\right)=P\left(q_{t}=S_{j} \mid q_{t-1}=S_{i}\right)
$$

- Furthermore we only assume processes where right-hand side is time independent - const. state transition probabilities

$$
a_{i j}=P\left(q_{t}=S_{j} \mid q_{t-1}=S_{j}\right) \quad 1 \leq i, j \leq N
$$

where

$$
a_{i j} \geq 0 \quad \sum_{j=1}^{N} a_{i j}=1
$$

Discrete hidden Markov model (DHMM)

Figure: Discrete HMM with 3 states and 4 possible outputs

- An observation is a probabilistic function of a state, i.e., HMM is a doubly embedded stochastic process
- A DHMM is characterized by
- N states S_{j} and M distinct observations v_{k} (alphabet size)
- State transition probability distribution A
- Observation symbol probability distribution B
- Initial state distribution π

Discrete hidden Markov model (DHMM)

- We define the DHMM as $\lambda=(A, B, \pi)$
- $A=\left\{a_{i j}\right\}$
$a_{i j}=P\left(q_{t+1}=S_{j} \mid q_{t}=S_{i}\right)$
$1 \leq i, j \leq N$
- $B=\left\{b_{i k}\right\}$
$b_{i k}=P\left(O_{t}=v_{k} \mid q_{t}=S_{i}\right)$
$1 \leq i \leq N$
$1 \leq k \leq M$
$1 \leq i \leq N$
- $\pi=\left\{\pi_{i}\right\} \quad \pi_{i}=P\left(q_{1}=S_{i}\right)$
$O=O_{1} O_{2} \ldots O_{T}$
(1) Set $t=1$, choose an initial state $q_{1}=S_{i}$ according to the initial state distribution π
(2) Choose $O_{t}=v_{k}$ according to the symbol probability distribution in state S_{i}, i.e., $b_{i k}$
(3) Transit to a new state $q_{t+1}=S_{j}$ according to the state transition probability distibution for state S_{i}, i.e., $a_{i j}$
(4) Set $t=t+1$, if $t<T$ then return to step 2

Three basic problems for HMMs

Evaluation Given the observation sequence $O=O_{1} O_{2} \ldots O_{T}$ and a model $\lambda=(A, B, \pi)$, how do we efficiently compute $P(O \mid \lambda)$, i.e., the probability of the observation sequence given the model
Recognition Given the observation sequence $O=O_{1} O_{2} \ldots O_{T}$ and a model $\lambda=(A, B, \pi)$, how do we choose a corresponding state sequence $Q=q_{1} q_{2} \ldots q_{T}$ which is optimal in some sense, i.e., best explains the observations
Training Given the observation sequence $O=O_{1} O_{2} \ldots O_{T}$, how do we adjust the model parameters $\lambda=(A, B, \pi)$ to maximize $P(O \mid \lambda)$

Brute force solution to the evaluation problem

- We need $P(O \mid \lambda)$, i.e., the probability of the observation sequence $O=O_{1} O_{2} \ldots O_{T}$ given the model λ
- So we can enumerate every possible state sequence $Q=q_{1} q_{2} \ldots q_{T}$
- For a sample sequence Q

$$
P(O \mid Q, \lambda)=\prod_{t=1}^{T} P\left(O_{t} \mid q_{t}, \lambda\right)=\prod_{t=1}^{T} b_{q_{t} O_{t}}
$$

- The probability of such a state sequence Q is

$$
P(Q \mid \lambda)=P\left(q_{1}\right) \prod_{t=2}^{T} P\left(q_{t} \mid q_{t-1}\right)=\pi_{q_{1}} \prod_{t=2}^{T} a_{q_{t-1} q_{t}}
$$

Brute force solution to the evaluation problem

- Therefore the joint probability

$$
P(O, Q \mid \lambda)=P(Q \mid \lambda) P(O \mid Q, \lambda)=\pi_{q_{1}} \prod_{t=2}^{T} a_{q_{t-1} q_{t}} \prod_{t=1}^{T} b_{q_{t} O_{t}}
$$

- By considering all possible state sequences

$$
P(O \mid \lambda)=\sum_{Q} \pi_{q_{1}} b_{q_{1} O_{1}} \prod_{t=2}^{T} a_{q_{t-1} q_{t}} b_{q_{t} O_{t}}
$$

- Problem: order of $2 T N^{T}$ calculations
- N^{T} possible state sequences
- about $2 T$ calculations for each sequence

Forward procedure

- We define a forward variable $\alpha_{j}(t)$ as the probability of the partial observation seq. until time t, with state S_{j} at time t

$$
\alpha_{j}(t)=P\left(O_{1} O_{2} \ldots O_{t}, q_{t}=S_{j} \mid \lambda\right)
$$

- This can be computed inductively

$$
\begin{array}{rlrl}
\alpha_{j}(1) & =\pi_{j} b_{j O_{1}} & 1 \leq j \leq N \\
\alpha_{j}(t+1) & =\left(\sum_{i=1}^{N} \alpha_{i}(t) a_{i j}\right) b_{j O_{t+1}} & 1 \leq t \leq T-1
\end{array}
$$

- Then with $N^{2} T$ operations:

$$
P(O \mid \lambda)=\sum_{i=1}^{N} P\left(O, q_{T}=S_{i} \mid \lambda\right)=\sum_{i=1}^{N} \alpha_{i}(T)
$$

Forward procedure

Figure: Operations for computing the forward variable $\alpha_{j}(t+1)$

Figure: Computing $\alpha_{j}(t)$ in terms of a lattice

Backward procedure

Figure: Operations for computing the backward variable $\beta_{i}(t)$

- We define a backward variable $\beta_{i}(t)$ as the probability of the partial
 observation seq. after time t, given state S_{i} at time t

$$
\beta_{i}(t)=P\left(O_{t+1} O t+2 \ldots O_{T} \mid q_{t}=S_{i}, \lambda\right)
$$

- This can be computed inductively as well

$$
\begin{array}{rlrl}
\beta_{i}(T) & =1 & 1 \leq i \leq N \\
\beta_{i}(t-1) & =\sum_{j=1}^{N} a_{i j} b_{j O_{t}} \beta_{j}(t) & 2 \leq t \leq T
\end{array}
$$

Uncovering the hidden state sequence

- Unlike for evaluation, there is no single "optimal" sequence
- Choose states which are individually most likely (maximizes the number of correct states)
- Find the single best state sequence (guarantees that the uncovered sequence is valid)
- The first choice means finding $\operatorname{argmax}_{i} \gamma_{i}(t)$ for each t, where

$$
\gamma_{i}(t)=P\left(q_{t}=S_{i} \mid O, \lambda\right)
$$

- In terms of forward and backward variables

$$
\begin{aligned}
\gamma_{i}(t) & =\frac{P\left(O_{1} \ldots O_{t}, q_{t}=S_{i} \mid \lambda\right) P\left(O_{t+1} \ldots O_{T} \mid q_{t}=S_{i}, \lambda\right)}{P(O \mid \lambda)} \\
\gamma_{i}(t) & =\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{j=1}^{N} \alpha_{j}(t) \beta_{j}(t)}
\end{aligned}
$$

Viterbi algorithm

- Finding the best single sequence means computing $\operatorname{argmax}_{Q} P(Q \mid O, \lambda)$, equivalent to $\operatorname{argmax}_{Q} P(Q, O \mid \lambda)$
- The Viterbi algorithm (dynamic programming) defines $\delta_{j}(t)$, i.e., the highest probability of a single path of length t which accounts for the observations and ends in state S_{j}

$$
\delta_{j}(t)=\max _{q_{1}, q_{2}, \ldots, q_{t-1}} P\left(q_{1} q_{2} \ldots q_{t}=j, O_{1} O_{2} \ldots O_{t} \mid \lambda\right)
$$

- By induction

$$
\begin{array}{rlrl}
\delta_{j}(1) & =\pi_{j} b_{j O_{1}} & 1 \leq j \leq N \\
\delta_{j}(t+1) & =\left(\max _{i} \delta_{i}(t) a_{i j}\right) b_{j O_{t+1}} & 1 \leq t \leq T-1
\end{array}
$$

- With backtracking (keeping the maximizing argument for each t and j) we find the optimal solution

Backtracking

Figure: Illustration of the backtracking procedure (c) G.W. Pulford

Estimation of HMM parameters

- There is no known way to analytically solve for the model which maximizes the probability of the observation sequence
- We can choose $\lambda=(A, B, \pi)$ which locally maximizes $P(O \mid \lambda)$
- gradient techniques
- Baum-Welch reestimation (equivalent to EM)
- We need to define $\xi_{i j}(t)$, i.e., the probability of being in state S_{i} at time t and in state S_{j} at time $t+1$

$$
\begin{aligned}
\xi_{i j}(t) & =P\left(q_{t}=S_{i}, q_{t+1}=S_{j} \mid O, \lambda\right) \\
\xi_{i j}(t) & =\frac{\alpha_{i}(t) a_{i j} b_{j O_{t+1}} \beta_{j}(t+1)}{P(O \mid \lambda)}= \\
& =\frac{\alpha_{i}(t) a_{i j} b_{j O_{t+1}} \beta_{j}(t+1)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i}(t) a_{i j} b_{j O_{t+1}} \beta_{j}(t+1)}
\end{aligned}
$$

Estimation of HMM parameters

Figure: Operations for computing the $\xi_{i j}(t)$

- Recall that $\gamma_{i}(t)$ is a probability of state S_{i} at time t, hence

$$
\gamma_{i}(t)=\sum_{j=1}^{N} \xi_{i j}(t)
$$

- Now if we sum over the time index t
- $\sum_{t=1}^{T-1} \gamma_{i}(t)=$ expected number of times that S_{i} is visited* $=$ expected number of transitions from state S_{i}
- $\sum_{t=1}^{T-1} \xi_{i j}(t)=$ expected number of transitions from S_{i} to S_{j}

Baum-Welch Reestimation

- Reestimation formulas

$$
\bar{\pi}_{i}=\gamma_{i}(1) \quad \overline{a_{i j}}=\frac{\sum_{t=1}^{T-1} \xi_{i j}(t)}{\sum_{t=1}^{T-1} \gamma_{i}(t)} \quad \overline{b_{j k}}=\frac{\sum_{O_{t}=v_{k}} \gamma_{j}(t)}{\sum_{t=1}^{T} \gamma_{j}(t)}
$$

- Baum et al. proved that if current model is $\lambda=(A, B, \pi)$ and we use the above to compute $\bar{\lambda}=(\bar{A}, \bar{B}, \bar{\pi})$ then either
- $\bar{\lambda}=\lambda$ - we are in a critical point of the likelihood function
- $P(O \mid \bar{\lambda})>P(O \mid \lambda)$ - model $\bar{\lambda}$ is more likely
- If we iteratively reestimate the parameters we obtain a maximum likelihood estimate of the HMM
- Unfortunately this finds a local maximum and the surface can be very complex

Non-ergodic HMMs

- Until now we have only considered ergodic (fully connected) HMMs
- every state can be reached from any state in a finite number of steps

Figure: Ergodic HMM

- Left-right (Bakis) model good for speech recognition
- as time increases the state index increases or stays the same
- can be extended to parallel left-right models

Figure: Left-right HMM

Figure: Parallel HMM

Gaussian HMM (GMMM)

- HMMs can be used with continous observation densities
- We can model such densities with Gaussian mixtures

$$
b_{j \mathbf{0}}=\sum_{m=1}^{M} c_{j m} \mathcal{N}\left(\mathbf{O}, \boldsymbol{\mu}_{j m}, \mathbf{U}_{j m}\right)
$$

- Then the reestimation formulas are still simple

$$
\begin{aligned}
\gamma_{t}(j, k) & =\left[\frac{\alpha_{t}(j) \beta_{t}(j)}{\sum_{i=1}^{N} \alpha_{t}(j) \beta_{t}(j)}\right]\left[\frac{c_{j k} \mathfrak{V}\left(\boldsymbol{O}_{t}, \boldsymbol{\mu}_{j k}, \boldsymbol{U}_{j k}\right)}{\sum_{m=1}^{M} c_{j m} \mathscr{N}\left(\boldsymbol{O}_{t}, \boldsymbol{\mu}_{j,}, \boldsymbol{U}_{j m}\right)}\right] \quad \bar{c}_{j k}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, k)}{\sum_{t=1}^{T} \sum_{k=1}^{M} \gamma_{t}(j, k)} \\
\overline{\boldsymbol{\mu}}_{j k} & =\frac{\sum_{t=1}^{T} \gamma_{t}(j, k) \cdot \boldsymbol{O}_{t}}{\sum_{t=1}^{T} \gamma_{t}(j, k)} \quad \overline{\boldsymbol{U}}_{i k}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, k) \cdot\left(\boldsymbol{O}_{t}-\boldsymbol{\mu}_{j k}\right)\left(\boldsymbol{O}_{t}-\boldsymbol{\mu}_{j k}\right)^{\prime}}{\sum_{t=1}^{T} \gamma_{t}(j, k)}
\end{aligned}
$$

More fun

- Autoregressive HMMs
- State Duration Density HMMs
- Discriminatively trained HMMs
- maximum mutual information instead of maximum likelihood
- HMMs in a similarity measure
- Conditional Random Fields can loosely be understood as a generalization of an HMMs

Figure: Random Oxford fields © R. Tourtelot

- constant transition probabilities replaced with arbitrary functions that vary across the positions in the sequence of hidden states

