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Many neural network classifiers provide outputs which estimate Bayes- 
ian a posteriori probabilities. When the estimation is accurate, network 
outputs can be treated as probabilities and sum to one. Simple proofs 
show that Bayesian probabilities are estimated when desired network 
outputs are 2 of M (one output unity, all others zero) and a squared- 
error or cross-entropy cost function is used. Results of Monte Carlo 
simulations performed using multilayer perceptron (MLP) networks 
trained with backpropagation, radial basis function (RBF) networks, 
and high-order polynomial networks graphically demonstrate that net- 
work outputs provide good estimates of Bayesian probabilities. Esti- 
mation accuracy depends on network complexity, the amount of train- 
ing data, and the degree to which training data reflect true likelihood 
distributions and u priori class probabilities. Interpretation of net- 
work outputs as Bayesian probabilities allows outputs from multiple 
networks to be combined for higher level decision making, simpli- 
fies creation of rejection thresholds, makes it possible to compensate 
for differences between pattern class probabilities in training and test 
data, allows outputs to be used to minimize alternative risk functions, 
and suggests alternative measures of network performance. 

1 Introduction 

A strong, poorly understood, relationship exists between many neural 
networks and minimum-error Bayesian pattern classifiers. The outputs 
of many networks are not likelihoods or binary logical values near zero 
or one. Instead, they are estimates of Bayesian u posteriori probabilities, 
hereafter referred to as Bayesian probabilities. For an M class problem, 
Bayesian probabilities are estimated in a minimum mean-squared error 
sense when the network has one output for each pattern class, desired 
outputs are are 1 of M (one output unity corresponding to the correct 
class, all others zero), and a squared-error cost function is used. These 
conditions often hold for networks with sigmoidal nonlinearities trained 
using backpropagation, for radial basis function networks, and for net- 
works with high-order polynomials trained using a squared-error cost 
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function. When Bayesian probabilities are estimated accurately, classifi- 
cation error rate will be minimized, outputs sum to one, and outputs can 
be treated as probabilities. In addition, interpretation of network outputs 
as Bayesian probabilities makes it possible to compensate for differences 
in pattern class probabilities between test and training data, to combine 
outputs of multiple classifiers for higher level decision making, to use 
alternative risk functions different from minimum-error risk, to imple- 
ment conventional optimal rules for pattern rejection, and to compute 
alternative measures of network performance. 

A review of papers and recent discussions with other researchers sug- 
gest that the relationship between neural networks and optimal Bayesian 
classifiers is poorly understood. For example, network outputs are fre- 
quently treated as likelihoods or as binary values that should always 
be near zero or one. In addition, classification decisions are often con- 
sidered incorrect unless the "correct" network output is greater than 0.5. 
Although the desired output values used in a squared-error cost function 
are zero and one, actual output values, which are estimates of Bayesian 
probabilities, are not binary valued and may be near zero or one for only 
a small range of inputs. Common rules of thumb that output values dif- 
ferent from zero and one are indications that more training is required 
or that no classification decision should be made are not necessarily true. 
Such values may actually indicate that classes have overlapping distri- 
butions. In addition, the common practice of selecting patterns dur- 
ing training that are frequently confused may lead to poor estimates of 
Bayesian probabilities and may not necessarily reduce classification error 
rate. Bayesian probabilities are estimated accurately only when training 
data reflects the actual distribution of input features within each class. 

This paper first summarizes recent theoretical analyses and presents 
short proofs that network outputs estimate Bayesian probabilities when 
squared-error or cross-entropy cost functions are used. Results of simula- 
tion studies are then presented which demonstrate that network outputs 
closely estimate Bayesian probabilities. These simulations use squared- 
error, cross-entropy, and normalized-likelihood cost functions and three 
different types of neural network classifiers. Simulation results are also 
presented which suggest that different cost functions yield comparable 
estimation accuracy, and that illustrate how estimation accuracy degrades 
with inadequate network size or insufficient training data. Finally, impor- 
tant practical implications of interpreting network outputs as Bayesian 
probabilities are discussed. 

2 Theory 

After describing the general pattern classification problem and defin- 
ing Bayesian probabilities, this section provides two short proofs which 
demonstrate that when desired outputs are binary valued, squared-error 
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and cross-entropy cost functions are minimized when network outputs 
are Bayesian probabilities. A third cost function called normalized-likeli- 
hood is also briefly reviewed. 

2.1 Pattern Classification and Bayesian Probabilities. The task in 
many pattern classification problems is to assign an input vector, X, with 
elements { x , :  i = 1.. . . . D }  to one of M classes {C,: i = 1.. . . . M } .  Classes 
might represent different phonemes for speech recognition or different 
letters for hand-printed character recognition. Input values might be 
continuous or binary. Minimum-error Bayesian classifiers perform this 
task by calculating the Bayesian probability, p(C, I X), for each class, and 
assigning the input to the class with the highest Bayesian probability. 

The Bayesian probability p(C,  I X) represents the conditional proba- 
bility of class C, given the input X. Use of Bayes rule allows it to be 
expressed as follows: 

(2.1) 

In this equation, p ( X  1 C,) is the likelihood or conditional probability of 
producing the input if the class is C,, p(C, )  is the u priori probability of 
class C,, and p ( X )  is the unconditional probability of the input. Conven- 
tional Bayesian classifiers estimate the Bayesian probability for each class 
by separately estimating the factors in the above equation. Since p ( X )  is 
common to all classes, it is usually omitted and instead p ( X  I C,)p(C, )  is 
used for classification. In addition, conventional classifiers estimate the 
likelihoods, p ( X  1 C,), by assuming they can be well-modeled by specific 
parametric distributions, such as gaussian or gaussian mixture distribu- 
tions. Training involves estimating the parameters of the assumed like- 
lihood distributions and estimating the u priori class probabilities from 
training data. 

In contrast, neural networks do not estimate Bayesian probabilities 
in this indirect way. Instead, when the desired outputs are 1 of M and 
an appropriate cost function is used, Bayesian probabilities are estimated 
directly. The implication and practical benefit for pattern classification 
is that network outputs can be used as Bayesian probabilities for sim- 
ple classification tasks and can be treated as probabilities when making 
higher level decisions. However, as illustrated in Section 3, network out- 
puts provide good Bayesian probability estimates only if sufficient train- 
ing data are available, if the network is complex enough, and if classes are 
sampled with the correct a prior; class probabilities in the training data. 

2.2 Squared-Error Cost Function. The squared-error cost function 
has been used more frequently than any alternative. Its use yields good 
performance with large data bases on real-world problems; and it can 
be used for prediction or input/output mapping problems as well as 
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for classification problems. In addition, its use leads to a simple, non- 
iterative, matrix-inversion based algorithm to determine the network pa- 
rameters for single-layer networks with linear output nodes. The re- 
lationship between minimizing a squared-error cost function and esti- 
mating Bayesian probabilities was established for the two-class case as 
early as 1973 by Duda and Hart (1973). Many recent papers have pro- 
vided new derivations for the two-class and multiclass case (Bourlard 
and Wellekens 1989; Gish 1990; Hampshire and Perlmutter 1990; Ruck et 
al. 1990; Shoemaker 1991; Wan 1990; White 1989). The following simple 
derivation proves this relationship for the general multiclass case. 

As above, consider the problem of assigning an input vector X {x, :  
i = 1.. . . , D} to one of M classes {Cl: i = 1.. . . , M } .  Let C, denote 
the corresponding class of X ,  { y l ( X ) :  i = l , , . . ? M }  the outputs of the 
network, and {dl: i = 1. . . . , M} the desired outputs for all output nodes. 
Note that the actual network output is a function of the input X ,  whereas 
the desired output is a function of the class C, to which X belongs. For 
a 1 of M classification problem, d ,  = 1 if i = j ( X  belongs to C,) and 0 
otherwise. 

With a squared-error cost function, the network parameters are chosen 
to minimize the following: 

where E { . }  is the expectation operator. Denoting the joint probability 
of the input and the ith class by p ( X , C i )  and using the definition of 
expectation allows 2.2 to be expressed as follows: 

The above equation represents a sum of squared, weighted errors, with 
M errors appearing for each input-class pair. For a particular pair of 
input X and class C,, each error, y i ( X )  - di is simply the difference of 
the actual network output y i ( X )  and the corresponding desired output di. 
The M errors are squared, summed, and weighted by the joint probability 
p ( X ,  C,) of the particular input-class pair. 

Substituting p ( X ,  Cj) = p(C ,  I X ) p ( X )  in 2.3 yields 

(2.4) 
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or equivalently 

(2.5) 

(2.6) 

The advantage of expressing A as in 2.6 is the simplification it facilitates. 
Expanding the bracketed expression in 2.6 yields 

I M M  * = JE[ 1 c[Yi(x) - d~12P(c~ I x) p(x ,  ck) dX 
k = l  =I 1=1 

M M  

= E { Ccbf(x)  - dil2p(Cj I x)} 
,=1 I = ]  

Exploiting the fact that y:(X) is a function only of X and 
allows 2.7 to be expressed 

p(C, I X) = 1 

M M 

j=l j=1 

where E{di I X} and E{d? I X} are the conditional expectations of di and 
A:, respectively. Adding and subtracting CEl E2{di I X} in 2.9 allows it to 
be cast in a form commonly used in statistics that provides much insight 
as to the minimizing values for yi(X): 

A = E C[Y'(X) - 2yi(X)E{dj I X} + E2{dj 1 X} + E{d? I X }  
i=l 

(2.10) 
( M  

-E2{di I X}I} 

where var{di I X} is the conditional variance of di, and the identity 
var{d, I X} = E{d? I X} - E2{di 1 X} has been used. 

Since the second expectation term in 2.11 is independent of the net- 
work outputs, minimization of A or equivalently the squared-error cost 
function is achieved by choosing network parameters to minimize the 
first expectation term. But the first expectation term is simply the mean- 
squared error between the network outputs yi(X) and the conditional 
expectation of the desired outputs. Thus, when network parameters are 
chosen to minimize a squared-error cost function, outputs estimate the 
conditional expectations of the desired outputs so as to minimize the 
mean-squared estimation error. For a 1 of M problem, di equals one if the 
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input X belongs to class C, and zero otherwise. Therefore, the conditional 
expectations are the following: 

(2.12) 

(2.13) 

which are the Bayesian probabilities. Therefore, for a 1 of M problem, 
when network parameters are chosen to minimize a squared-error cost 
function, the outputs estimate the Bayesian probabilities so as to mini- 
mize the mean-squared estimation error. 

In the more general case when network outputs are not necessarily I 
of M but are binary, the outputs still have a probabilistic interpretation. 
Specifically, the conditional expectations of the desired outputs now be- 
come 

M 
E{dl I X) = CdIP(C1 I X) (2.14) 

= p " 4  = 1) I XI (2.15) 

where p [ ( d ,  = 1) I XI is the probability that the desired output is one 
given the input X. Therefore when the desired outputs are binary but 
not necessarily I of M and network parameters are chosen to minimize a 
squared-error cost function, the outputs estimate the conditional proba- 
bilities that the desired outputs are one given the input. 

1'1 

2.3 Cross-Entropy Cost Function. Many cost functions besides 
squared-error have been proposed that can be used to estimate Bayesian 
probabilities (Hampshire and Perlmutter 1990). These have been de- 
rived using cross-entropy (Baum and Wilczek 1988; Hinton 1990; Solla 
et al. 1988), Kullback-Liebler information (El-Jaroudi and Makhoul 1990; 
Gish 19901, maximum mutual information (Bridle 1990; Gish 19901, and 
Minkowski-r (Hanson and Burr 1988) criteria. The most popular alterna- 
tive cost function measures the cross-entropy between actual outputs and 
desired outputs, which are treated as probabilities (Baum and Wilczek 
1988; Hinton 1990; Hopfield 1987; Solla et al. 1988). It is normally mo- 
tivated by the assumption that desired outputs are independent, binary, 
random variables, and that the actual, continuous, network outputs rep- 
resent the conditional probabilities that these binary, random variables 
are one (Hinton 1990). It can also be interpreted as minimizing the 
Kullback-Liebler probability distance measure, maximizing mutual in- 
formation, or as maximum likelihood parameter estimation (Baum and 
Wilczek 1988; Bridle 1990; Gish 1990; Hinton 1990). When desired out- 
puts are zero and one, the cross-entropy cost function is the following: 

(2.16) 



Neural Network Classifiers 467 

The cross-entropy cost function has a different theoretical justification 
than the squared-error cost function and weights errors more heavily 
when actual outputs are near zero and one. However, use of both cost 
functions has yielded similar error rates in experiments with real-world 
data, including a phoneme classification experiment that used a large 
speech data base (Hampshire and Waibel 1990). Experiments on artifi- 
cial problems have, however, demonstrated reduced training times with 
the cross-entropy cost function (Holt and Semnani 1990; Solla et al. 1988). 
In addition, experiments on an artificial medical diagnosis problem have 
demonstrated improved performance with the cross-entropy cost func- 
tion when desired network outputs were known Bayesian probabilities 
instead of binary values (Hopfield 1987). 

A recent paper by Hampshire and Perlmutter (1990) proves that when 
desired outputs are binary, a cross-entropy cost function is minimized 
when network outputs estimate Bayesian probabilities. The following 
simple proof assumes desired network outputs are binary and is similar 
to the proof presented above for the squared-error cost function. This 
proof begins after the cross-entropy cost function in equation 2.16 has 
been expanded and simplified into 2.17 as was done in equations 2.3 to 
2.9 for the squared-error cost function. Equation 2.17 is then expanded 
and simplified as was done in equations 2.10 and 2.11 for the squared- 
error cost function. 

(2.18) 

- E { g [ E { d i  I x} l o g E { d i  I XI 
i=l  

+ ( I  - E{di  I x) ) log ( l -  E{di  I x})I} (2.19) 

Analogous to 2.11, the second major expectation term in 2.19 is indepen- 
dent of the outputs y,(X). Taking first and second derivatives shows that 
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the first expectation term in 2.19 is minimized when yi(X) = E{di I X }  for 
i = 1, . . . . M. Therefore, when network parameters are chosen to mini- 
mize a cross-entropy cost function, the outputs estimate the conditional 
expectations of the desired outputs. As noted earlier, when the desired 
outputs are binary, the conditional expectations are the conditional prob- 
abilities of the desired outputs being one; and for the special case of 1 of 
M problems, the conditional expectations are the Bayesian probabilities. 

2.4 Normalized-Likelihood Cost Function. A popular approach to 
parameter estimation with desirable asymptotic properties finds network 
parameters that maximize the likelihood of the training data (Duda and 
Hart 1973). The normalized-likelihood cost function described in this sec- 
tion is explicitly motivated by this approach. [With certain assumptions, 
the squared-error and cross-entropy cost functions have impIicit maxi- 
mum likelihood interpretations as well (Baum and Wilczek 1988; Bridle 
1990; Gish 1990; Hinton 1990).] 

If training patterns are independent, then the log likelihood of N train- 
ing patterns is 

(2.20) 

(2.21) 

In this equation, {Xp5 p = 1,. . . , N} represents the training data (in this 
case N samples), Cl(p) is the class of the pth sample, p[C,(p), Xp] is the joint 
probability of input pattern X, and class C,(p) occurring together, and 
p(X,) is the unconditional probability of Xp. Since p ( X p )  is independent 
of the network parameters, maximizing 2.21 is equivalent to maximizing 

(2.22) 

Each term in the above sum is the logarithm of the Bayesian probability 
of the class C,(p) corresponding to the pattern X,. If network outputs are 
assumed to be accurate estimates of these Bayesian probabilities, then 
maximizing the likelihood of the training data corresponds to minimizing 
the following cost function: 

(2.23) 

For the pth training pattern, this cost function includes only the net- 
work output y, corresponding to the class Cj(p) of that training pattern. 
Also, its use requires that network outputs can be interpreted as proba- 
bilities (i.e., outputs are nonnegative and sum to one). This probabilistic 
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interpretation can be guaranteed by normalizing network outputs as sug- 
gested in Bridle (1990), El-Jaroudi and Makhoul (1990), and Gish (1990). 
With the softrnax normalization approach described in Bridle (19901, the 
usual, sigmoidal functions in the output layer of the network: 

1 
Yi = (2.24) 

where net, is the weighted sum of inputs to output node i, are replaced 
by the following normalizing functions: 

(2.25) 

where net, is the weighted sum of inputs to output node j .  For a typical 
multilayer perceptron network, with H inputs {xi: i = 1,. . . , H }  to the 
output layer (each input corresponding to the output of a node in the 
preceding layer of the network), net, has the following form: 

H 

(2.26) 

where {w,, : i = 1,.  . . . H }  are the weights associated with output node j .  
The advantage of the softrnax form of normalization is that with these 
functions, update equations used during backpropagation are almost 
identical to those used for the cross-entropy cost function. 

Although maximum likelihood estimation has desirable asymptotic 
properties, the normalized-likelihood approach has not led to large reduc- 
tions in classification error rate with finite amounts of real-world train- 
ing data. For example, little difference in error rates was found when 
squared-error and normalized-likelihood cost functions were compared 
on a vowel classification problem (Nowlan 1990). 

3 Simulation Studies 

Many neural network and conventional classifiers use squared-error cost 
functions (Lippmann 1989). Although the above proofs demonstrate that 
this cost function is minimized when network outputs estimate true 
Bayesian probabilities, estimation accuracy may be poor with limited 
training data, incorrect network size, and the nonoptimal heuristic search 
procedures typically used for training networks (White 1989). This sec- 
tion describes simulation studies that explore estimation accuracy with 
three different neural network classifiers. Results demonstrate that these 
classifiers provide outputs which accurately estimate known Bayesian 
probabilities, that network outputs sum to one even though they are not 
explicitly constrained during training, that estimation accuracy degrades 
when training data or the network size is reduced, and that the use of 
alternative cost functions has little effect on estimation accuracy. 
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3.1 Estimation Accuracy with Squared-Error Cost Function. The ac- 
curacy with which neural network classifier outputs estimate Bayesian 
probabilities was explored using a squared-error cost function and three 
neural networks: multilayer perceptron (MLP) networks trained with 
backpropagation, radial basis function (RBF) networks trained with a 
matrix pseudoinverse technique, and high-order polynomial networks 
designed with the Group Method of Data Handling (GMDH). All ex- 
periments used one continuous-valued input, and the actual Bayesian 
probabilities were known and used to generate training and test data. 

For the MLP network, various topologies, with both one and two hid- 
den layers, were tested. Of the topologies tested, one with a single hid- 
den layer of 24 nodes offered the best training-time/estimation-accuracy 
tradeoff. Unless indicated otherwise, the results shown in this section 
were obtained with this topology, a step size of 0.01, and momentum 
of 0.6. 

The RBF network contained one hidden layer with gaussian basis 
function nodes. Gaussian means and variances were obtained using a 
clustering technique based on the Estimate-Maximize (EM) algorithm as 
in Ng and Lippmann (1991a,b). Weights between basis function and 
output nodes were determined using a matrix pseudoinverse approach 
and outputs of basis function nodes were not normalized to sum to one. 
Twenty-four hidden nodes were used to facilitate comparison with the 
MLP network. 

High-order polynomial networks, hereafter referred to as GMDH net- 
works, were created with the Group Method of Data Handling (Barron 
1984). In contrast to MLP and RBF networks in which the network topolo- 
gies were fixed and only the weights changed during training, both the 
topology and weights of the high-order polynomial networks changed 
during training as in Ng and Lippmann (1991a,b). Thus, the topolo- 
gies of the high-order polynomial networks used for the two problems 
differed. 

Two classification problems used for experiments are depicted in Fig- 
ures 1A and 2A. Figure 1A shows the likelihoods p ( X  I C,) for a three 
class, univariate problem. All three likelihood distributions are unit vari- 
ance, gaussian distributions and differ only in their means. Figure 2A 
depicts the likelihoods for a two-class problem. Likelihood distributions 
have two-component gaussian mixture distributions: 

1 

1 
2 

P ( x  1 C,) = 2 [N( -4.2) + N(2.2)] 

P ( x  1 C,) = - “(-2.2) + N(4.2)] 

(3.1) 

(3.2) 

where N(rn .c~)  is a univariate, gaussian distribution with mean rn and 
variance 02. In all examples, the a priori class probabilities are equal. 

Figures 1B and 2B show the Bayesian probabilities for the correspond- 
ing likelihood distributions of Figures 1A and 2A. Note that for each 
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Figure 1: (A) Likelihoods, p ( X  I Ci), and (B) Bayesian probabilities, p ( C i  I X ) ,  
for the three-class problem. 

input value, the Bayesian probabilities sum to one. Also, since the a pri- 
ovi class probabilities are equal, for each input value the Bayesian prob- 
ability is largest for that class Ci for which the corresponding likelihood 
p ( X  I C i )  is largest, and smallest for that class for which the corresponding 
likelihood is smallest. 

Figures 3A and B depict the actual Bayesian probabilities for Class 1 
and the corresponding network outputs for the two problems. Four thou- 
sand training samples were used for each class. Twelve thousand training 
samples were thus used for the three-class problem and eight thousand 
samples were used for the two-class problem. For the MLP network, 
each training sample was used only once for training because of the 
good convergence that resulted without repeating samples. The network 
outputs estimated Bayesian probabilities best in regions where the input 
X had high probability for at least one class and worst in regions where 
the input had low probability for all classes. This was a consequence 
of the squared-error cost function used for training the networks. Much 
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Figure 2: (A) Likelihoods, p ( X  1 C;), and (B) Bayesian probabilities, p(C;  I X ) ,  
for the two-class problem. 

training data existed (on average) in regions of high probability and little 
training data existed in regions of low probability. Because of this, devi- 
ations of the network outputs from the Bayesian probabilities in regions 
of high probability strongly impacted the squared-error cost function. 
Similarly, deviations of the network outputs from the actual Bayesian 
probabilities in regions of low probability only weakly influenced the 
squared-error cost function. 

MLP network outputs provided the best estimates in regions of low 
probability. The GMDH network outputs behaved erratically in these 
regions, and the RBF network outputs quickly approached zero inde- 
pendent of the actual Bayesian probabilities. This behavior of the RBF 
network was due to the fact the node centers, {m,} ,  calculated using the 
EM algorithm lay in or near regions of high probability (equivalently 
regions where most of the training data lie), and the outputs of the RBF 
network approached zero for input samples far from the node centers. 
Addition of extra nodes with centers in regions of low probability or 
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Figure 3: Actual Bayesian probabilities and corresponding network outputs for 
(A) the three-class problem and (B) the two-class problem. 

nodes with constant outputs did not improve the accuracy of the estima- 
tion. In fact, simulations revealed that overall estimation accuracy often 
deteriorated with the addition of extra nodes. 

3.2 Network Outputs Sum to One. Network outputs should sum to 
one for each input value if outputs accurately estimate Bayesian prob- 
abilities. For the MLP network, the value of each output necessarily 
remains between zero and one because of the sigmoidal functions used. 
However, the criterion used for training did not require the outputs to 
sum to one. In contrast, there were no constraints on the outputs of the 
RBF and GMDH networks. Nevertheless, as shown in Figures 4A and 
B, the summed outputs of the MLP network are always close to one and 
the summed outputs of the RBF and GMDH networks are close to one 
in regions where the input has high probability for at least one class. As 
such, normalization techniques proposed to ensure that the outputs of an 
MLP network are true probabilities (Bridle 1990; El-Jaroudi and Makhoul 
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Figure 4: Summed outputs of networks for (A) the three-class problem and (B) 
the two-class problem. 

1990; Gish 1990) may be unnecessary. This is further supported by re- 
sults of experiments performed in Bourlard and Morgan (19891, which 
demonstrated that the sum of the outputs of MLP networks is near one 
for large phoneme-classification speech-recognition problems. 

3.3 Effects of Reducing Training Data and Network Size. The deri- 
vation in the preceding section, in particular the expression for A in 2.2, 
implicitly assumed availability of infinite training data. In practice, train- 
ing data is finite. Instead of minimizing 2.2, the following is minimized: 

(3.3) 

In this equation { X , , p  = l . . . .  , N )  represents the training data (in this 
case N samples), d , ( p )  represents the desired output for the pth sample, 
and yj(X,) represents the actual network output for the pth sample. The 
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Figure 5: Accuracy of Bayesian probability estimation for Class 1 of the two- 
class problem with (A) 3000 samples/class and (B) 1000 samples/class. 

accuracy of the error criterion given by 3.3 in estimating 2.2 influences 
the accuracy of the network outputs in estimating Bayesian probabilities. 
The result is that the accuracy of the Bayesian estimation deteriorates 
with a decreasing training set size. Figures 5A and B illustrate this by 
showing actual Bayesian probabilities and the corresponding outputs of 
the three networks for Class 1 of the two-class problem when fewer than 
the original four thousand training samples per class are used. Figure 
5A depicts the results of using three thousand training samples per class; 
and Figure 5B depicts the results of using one thousand training samples 
per class. 

The derivation in the preceding section also implicitly assumed that 
the network is sufficiently "complex" to enable the outputs to accurately 
estimate the Bayesian probability functions. If the network is not suf- 
ficiently complex, however, estimation accuracy degrades. Figures 6A 
and B confirm this for the MLP and RBF networks by depicting the ac- 
tual Bayesian probabilities for Class 1 of the two-class problem and the 
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corresponding outputs of networks with 12 and 4 hidden nodes, respec- 
tively, down from the 24 hidden nodes in the networks used for the 
preceding examples. 

3.4 Comparison of Cost Functions. A final set of simulations was 
performed to compare the estimation accuracy provided by the three 
cost functions. Comparisons used MLP classifier networks trained with 
squared-error, cross-entropy, and normalized-likelihood cost functions. 
Figure 7 shows results for the three-class and two-class problems, using 
a network with a single hidden layer of 24 nodes and using four thousand 
training samples per class. 

Estimation accuracy is comparable with all three cost functions. This 
result agrees with previous experiments (Hampshire and Waibel 1990; 
Nowlan 1990) which demonstrated little differences in error rates when 
comparing squared-error to cross-entropy or normalized-likelihood cost 
functions on vowel and phoneme classification tasks. Although the cross- 
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B) BAYESIAN PROBABILITIES -- TWO-CLASS PROBLEM 
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Figure 7 Network outputs and Bayesian probabilities with squared-error, cross- 
entropy, and normalized-likelihood cost functions for (A) the three-class prob- 
lem and (B) the two-class problem. 

entropy cost function applies more weight to errors when network out- 
puts arc near zero and one, Figure 7 demonstrates that estimation accu- 
racy is no better in those regions than that obtained using a squared-error 
cost function. However, for the two-class problem, use of the normalized- 
likelihood cost function offers a slight increase in estimation accuracy 
over use of both the cross-entropy and squared-error cost functions, in 
the region of low probability for the class shown. 

The high estimation accuracy achieved with each cost function re- 
quired careful selection of step size and momentum. Experiments were 
conducted with step size values ranging from 0.001 to 0.5, and momen- 
tum values ranging from 0.05 to 1. Estimation accuracy for all cost 
functions was fairly sensitive to small variations in step size but less 
sensitive to variations in momentum. Results shown in Figure 7 were 
obtained with step-size/momentum values of 0.01 /0.6 for the squared- 
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error, 0.005/0.5 for the cross-entropy, and 0.005/0.l for the normalized- 
likelihood cost function. 

4 Practical Implications 

The above results demonstrate that many common neural network classi- 
fiers have outputs which estimate Bayesian probabilities. An understand- 
ing of this relationship offers practical guidance for training and using 
these classifiers. Interpretation of network outputs as Bayesian probabil- 
ities allows outputs from multiple networks to be combined for higher 
level decision making, simplifies creation of rejection thresholds, makes 
it possible to compensate for differences between pattern class probabil- 
ities in training and test data, allows outputs to be used to minimize 
alternative risk functions, and suggests alternative measures of network 
performance. 

4.1 Compensating for Varying u priori Class Probabilities. Net- 
works with outputs that estimate Bayesian probabilities do not explicitly 
estimate the three terms on the right of equation 2.1 separately. However, 
the output yl(X) is implicitly the corresponding n priori class probability 
p ( C , )  times the class likelihood p ( X  I C,) divided by the unconditional 
input probability p ( X ) .  It is possible to vary a priori class probabilities 
during classification without retraining, since these probabilities occur 
only as multiplicative terms in producing the network outputs. As a 
result, class probabilities can be adjusted during use of a classifier to 
compensate for training data with class probabilities that are not rep- 
resentative of actual use or test conditions. Correct class probabilities 
can be used during classification by first dividing network outputs by 
training-data class probabilities and then multiplying by the correct class 
probabilities. Training-data class probabilities can be estimated as the 
frequency of occurrence of patterns from different classes in the training 
data. Correct class probabilities required for testing can be obtained from 
an independent set of training data that needs to contain only class labels 
and not input patterns. Such data are often readily available. For exam- 
ple, word frequency counts useful for spoken word recognition can be 
obtained from computer-based text data bases and the frequency of oc- 
currence of various diseases for medical diagnosis can be obtained from 
health statistics. 

4.2 Minimum-Risk Classification. Minimum-risk classifiers differ- 
entially weight the various types of classification errors (e.g. false pos- 
itives and false negatives on a medical screening test) and require class 
likelihoods and likelihood ratios to make classification decisions (Duda 
and Hart 1973; Fukunaga 1972). As indicated by equation 2.1, ratios of 
network outputs will be likelihood ratios if each output is first divided 
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by the corresponding training-data class probability, P(  C,). Minimum- 
risk classifiers can thus be designed using normalized or scaled ratios of 
network outputs. 

4.3 Combining Outputs of Multiple Networks. Class likelihoods 
are often multiplied together during higher level decision making to 
combine information from multiple classifiers with independent inputs. 
Equation 2.1 demonstrates that network outputs can be divided by train- 
ing-data class probabilities to produce scaled likelihoods, where the scal- 
ing factor is the reciprocal of the unconditional input probability. Corre- 
sponding scaled likelihoods (i.e., normalized outputs) from several clas- 
sifiers can be multiplied together to determine overall class likelihoods 
if inputs to different classifiers are independent. Since all scaled like- 
lihoods for any one classifier have the same scaling factor (the uncon- 
ditional input probability), classification decisions based on the product 
of scaled likelihoods will be the same as those based on actual likeli- 
hoods. We, for example, have used this approach to obtain scaled word 
likelihoods by multiplying scaled likelihoods (normalized network out- 
puts from RBF networks) from classifiers that model subword speech 
units (Singer and Lippmann 1992). In this application, the outputs of 
networks that model subword units are normalized by the training-data 
subword-unit class probabilities and the resulting normalized outputs are 
multiplied together to determine scaled word likelihoods. Normalizing 
outputs by training-data subword-unit class probabilities in our exper- 
iments and in speech recognition experiments by others (Bourlard and 
Morgan 1990) has resulted in a large reduction in word error rate over 
unnormalized outputs. Similar techniques could be used for handwritten 
word recognition if individual classifiers recognize letters, and for other 
applications that integrate scores from many classifiers. 

4.4 Setting Rejection Thresholds. In many classification problems, 
it is more costly to misclassify an input pattern than to reject an input. 
For example, in digit recognition of dollar amounts on checks it may be 
less costly to have a human read and verify a check than to recognize 
an incorrect dollar amount. In these situations statistical theory suggests 
rejecting an input if all Bayesian probabilities for that input are less than 
a threshold (Fukunaga 1972). Such a rejection rule can be directly imple- 
mented by using network outputs as Bayesian probabilities and rejecting 
an input if all outputs are below a threshold. 

4.5 Alternative Performance Measures. The performance of a clas- 
sifier that uses a squared-error cost function is normally assessed by 
measuring the classification error rate and the squared error between 
desired and actual network outputs. The above theoretical analysis, 
however, suggests two other useful figures of merit. First, if network 
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outputs estimate Bayesian probabilities accurately, then all network out- 
puts should be nonnegative and sum to unity. This was demonstrated 
in the above simulations and in studies using speech data (Bourlard and 
Morgan 1989). Second, as noted in Wan (1990), the expected value of 
each network output y, should be the a priori class probability P ( C , )  for 
the corresponding class C,. These expected values can be estimated by 
averaging the network outputs over all training data. The difference be- 
tween averaged network outputs and estimated a priori class probabilities 
can be measured using a relative entropy distance or any other distance 
measure suitable for use with probabilities. For example, if Ave{y,} rep- 
resents network outputs averaged over all training data and Freq{C,} 
represents the frequency of occurrence of class C, in the training data 
(number of times class C, occurred in the training data divided by total 
number of training patterns), an appropriate relative entropy distance 
measure is the following: 

Significant differences either between averaged network outputs and es- 
timated a priori class probabilities or between the sum of network outputs 
and unity indicate inaccurate estimation of Bayesian probabilities. 

5 Summary 

This paper has shown that there is a strong relationship between the out- 
puts of neural networks and Bayesian probabilities. Theoretical analyses 
demonstrated that a squared-error cost function is minimized for an M 
class problem when network outputs are minimum, mean-squared, error 
estimates of Bayesian probabilities. Similar theoretical results demon- 
strated that Bayesian probabilities are estimated with other cost functions 
such as cross-entropy, as well. Simulations demonstrated that network 
outputs estimate Bayesian probabilities when using a squared-error cost 
function with radial basis function networks, high-order polynomial net- 
works, or multilayer perceptron networks with sigmoidal nonlinearities. 
Estimation accuracy is high only if the network is sufficiently complex, 
adequate training data are available, and training data accurately reflect 
the actual likelihood distributions and the a priori class probabilities. 

Researchers should be aware of the connection between neural net- 
work outputs and Bayesian probabilities and not treat network outputs 
as binary, logical values, or as likelihoods. They should also understand 
the practical implications of this relationship between network outputs 
and Bayesian probabilities as discussed in the previous section of this 
paper. 
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