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fori = 1,---h, j = 1,---,m, which implies thatQP admits a
block triangular structure after reordering its rows and its diagonal

blocks consist of rows of(t). So it follows from the invertibility of On Sampling Without Loss of
é(t) that QP has full row rank. Thus for any; and anyt € [0, T7, Observability/Controllability
— 0 QP S
QP = 5P OP has full row rank, which implies that the rows
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of Q are linearly independent. As a consequence, the vectors in
Lemma 2 are linearly independent for ahy [0, T].
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A condition on the sampling tim&, which is sufficient (and in many contain new information so that, in the long run, the accumulated
cases also necessary) to rule out pathological situations, is that information is the same as if the output had been samgéeselyin
. time. This clearly preserves observability. The case of controllabilit
Ao = AT # @mj)t, (= H1, 42, is then the dual.y;lthough different in eqyuations, it follows the samg

for each pair(\,, A,) of eigenvalues of the continuous-time systemprinciple.

The above condition imposes only a minor restriction on the
admissible sampling times when the system data are known exactly. II. MAIN RESULT
But whgn the system data (gnd hepce the relevant eigenvalues) a€onsider a linear, continuous time system
uncertain and only known to lie within some bounded set, as, e.g., in
robust control problems, then a sufficiently snilbr, equivalently, a Yo & =Fa 4 Gu,z(0) = xo
sufficiently high sampling raté/7" may have to be chosen to satisfy y=Hz (1)
this condition. And when the set of uncertainty is unbounded, as, - . . ) N
e.g., in adaptive control problem formulations, then a feadgbteay ~With statez € R", inputw € R™, outputy € R, and timet € R™.

not at all exist. Consider further a sampling pattefty.. ¥ € Z{ } and a zero-order
This background strongly motivates our interest in a sampling 8P!d applied to (1), which results in the associated discretized system

discretization scheme which has the property that for each observable Yot wpgq =l Gt g

and controllable system, no matter what its parameters are, the S o

resulting discrete-time system is also observable and controllable. +/ e TG AT uy

The above discussion indicates that a solution, if one exists, must tr

involve nonequidistant sampling. To the author’s knowledge suitable Yk =Hp @

nonequidistant time patterns, which rule out pathological discretizghere ., := x(t;) andyx := y(tx), andu; denotes the (constant)
tion completely, have not been reported in the literature. input for t € [tg, trp1)-

For completeness we note that so-called generalized hold functiongn order that observability and controllability can always (i.e.,
can be designed for any sampling tiriie so that controllability is jrrespective of the actual system data) carry over fimto T, the
preserved for a given system [2], [3] and, as an extension thereof, &mpling pattern will have to be nonequidistant, and thereftye
almost anyI" so that controllability is preserved simultaneously fofijl| be a time varying system. Its observability and controllability
almost any given (finite) set of systems [4]. Apparently these resulifall be established in the following sense.
do not extend to the (infinite) set of all controllable systems, which pefinition (Observability): £ is said to be (uniformly and com-
is of interest here, and they also do not extend to the observabilfistely) observable, if there exists a positive integesuch that,
problem, due to lack of an output element, which is dual to the holglven any initial timet,, the stater, is uniquely determined from
function. On the other hand, multi-rate sampling approaches (see, G, Yet1s o Yhtw ) ANO{ gy Upg1, s Uhgp 1) O
[5] for a comprehensive treatment and further references), which carpefinition (Controllability): T, is said to be (uniformly and com-
approximate generalized hold functions, and which have the dualfjetely) controllable, if there exists a positive integersuch that,
that multiple rates can be used both at the input and output, uUi@en any initial timet, initial statez’ and terminal state’’., there
equidistant high-rate sampling. So in both approaches pathologi@la control sequencéuy., wiii, -+, urs,—1} which transfers the
discretization is not structurally ruled out, which takes us back to tRgate fromuy = ' to w4p, = 2" O
original problem. The property of completeness refers to the fact thig indepen-

The problem is best illustrated by an example. The sigii&l =  dent of the initial and terminal states, while uniformity requires that
sin(wt) is the output of a second-order observable system withe same, works for all initial times. Both properties together make
parameter. and eigenvaluestjw. Suppose thay(t) is sampled observability and controllability o, qualitatively similar to that
at time instantsk7,k = 0,1,2,---, and that the parameter valueof 3 time-invariant system [6], [7].

happens to ber = «/T. Theny(kT) = 0 for all k, the discretized  Finally we propose a sampling pattefn., € Z} with structure
system is not observable, and the eigenvalue condition is violated. It is

o , — 2 ... N
clear that some extra, intermediate sampling times should be added. B} KT, , k=0,1, 2 N
; . . i i te = NT+ T, Ek=N+1 (©)]
It is also clear that for a fixed pair of eigenvalues the eigenvalue : A NT 4T s N 41
condition cannot be violated for both and 7", whereT and 7’ k(v B N4 T, >N+

are sampling times such th&t/7’ is an irrational real number. and any choice of parameteéfs T’ € RT and N € Z* such that
This motivates sampling at timé<" and k7', k = 0,1,2,---. It is

s :

evident that this sampling pattern resolves the observability problem T/T"is not rational )
in the above example for alb. The underlying idea, which is to gng
observe those eigenmotions at tinfeE’ which cannot be observed )
at timeskT’, and vice versa, however, does not carry over to higher N2Zmn. ®)
order systems. For example, the signal As usual R",Z,Z* and Z{ denote the sets of positive real

y(t) = sin(t) — sin((1 + 27)t) — sin((1 + V27)t) numb.ers, integers, positive integers, and nonnegative integers, re-

) g ) spectively.
+sin((1+ V27 + 2m)1) The sampling pattern is illustrated in Fig. 1. It is nonequidistant and

is the output of an eighth-order observable system. Sampling it Rgriodic. Each period has a block 8F successive sampling intervals
times kT and kT’ with T = 1,T' = /2 gives zero at all sampling Of lengthT, followed by one sampling interval of lengfhi'.
instants, and so observability is not preserved. This illustrates somd3ased on these preliminaries the main result of this paper can now
of the complexity and counterintuitiveness of the problem. be stated as follows.

In this paper we go back to the original definition of observability Theorem: If E is discretized with sampling pattern (3)—(5), then:
and derive a simple nonequidistant periodic sampling pattern. It hasl) observability ofS« implies observability o= p;
the most notable property that new measurement samples alway8) controllability of X implies controllability ofX,. O
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first period second period
N intervals of length T' N intervals of length 7'
T T T T T T T T
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Fig. 1. The proposed nonequidistant periodic sampling pattern.

For completeness we note thafif: is not observable or not con-  Proof of the Theorem (Part 1), ObservabilitySuppose that
trollable, then the Theorem still applies to the observable subsysteamot observable and (7) holds for some nonzére R". From
and to the controllable subsystemXé, respectively. The result can (7) and the definition of the sampling times in (3)—(5), it is clear
then be summarized that in the transition fraip to ¥, a loss of that Lemma 1 applies for all starting points of a sampling period, i.e.,
observability or controllability does not occur. forall t' = j(NT +1T'),j € Z. This gives

The proof of the Theorem, which is given in the next section, EGTHGT ) e . . +
simplifies by the fact that the sampling pattern is periodic. This makes He ¢=0, forallieZ,jeZy. (10)
¥, periodically time-varying and hence all its properties uniform in Since the matrix exponential is an analytic function, we can further
time. So what remains to be proved is the existence of an integer apply Lemma 2 to conclude that
the sense of the above definition, where now instead oftargnly He e =0, forallt>0 (11)

the initial time ¢, = 0 needs to be considered. ) )
i.e., X¥¢ is not observable.

We have thus shown that £, is not observable theXc is
not observable. Hence observability Bf; implies observability of
3. O

Ill. PROOF OF THE THEOREM

A. Observability
We start by realizing that, is not observable if and only if the B. Controllability
set of equations The state of£p, at timet,,v € Z{ is obtained from (2) as

Fty, -+ —
ye = He" "o ke’ (6) i v=l ey
' 0 T, = et (t’”ftO);to + Z/ TG dr W (12)
does not have a unique solutiag or, equivalently, if and only if k=0 7t
there exists a nonzero vectore R™ such that This can be rewritten in the form
Fty, o ) + : ) vl i
He''v¢ =0, forallkeZ;. ) e Fl oy / TG dr (13)
The sampling pattern under investigation has block&'asucces- o .’“ZO. Tk
sive sampling intervals of length. This gives rise to the following ~ For the controllability investigationy, andx, are allowed to be
extension principle. arbitrary, and so the left-hand side of (13) can assume any vector
Lemma 1: For eacht’ € R, if in R™.
F (4T The right-hand side of (13) admits (by variation of the control
He =0 (8) sequencduo,ui,---,u, 1})acertain set of vectors, which depends

is true fori = 0.1.2 1 then it is true for alli € 7 o onv This set is monotone increasing withand for eachv forms
PRI ’ ! ) a subspace dR". If for some finiterv the corresponding subspace

f Fr)T:?nOf ffr Lf(lem??hl l'(‘; g\'/\\//:? |r;tt:et Qﬁpﬁndl? tm rem nte alsR", then X, is clearly controllable.
€ a 1 reflects tne kno acttha €n output measureme scC)lgonversely, if¥p is not controllable, then the right-hand side of

an unforced linear continuous-time system are taken equally spa 29 is in some fixed subspace for alle 7+, i.e., a nonzerg € R”
in time, thenn successive measurements contain as much informatiE;)r(llsts such that 0
(about the initial state) as infinitely many of them. thin ,

The sampling pattern further has an extra sampling intefVal / e "G dr =0, forallkezf (14)
at the end of each period, which causes a nonrational shift between t
every two successive blocks &f sampling intervals of lengti. The or, equivalently
effect is that if we let’ in Lemma 1 range over the set of all starting ST "
points of a sampling period, i.e., l€t= j(NT +1T"),j € ZT, then / e TGdr=0, forallkeZg. (15)
' +iT,i € Z ranges over all time instancéB + jT",i € Z,j € Z¢ . 0
The latter cover the time intervdd, o) densely, as the following
lemma shows.

Lemma 2: For eacht > 0 and eache > 0 there existi € Z and
j € ZF such that

The particular sampling pattern (3)—(5) now gives rise to an
extension principle in integral form, which may be regarded as a
controllability counterpart of Lemma 1.

Lemma 3: For eacht’ € TR, if

/T :
It — (T + T <e. ) / et TGdr =0 (16)
0
O istrue fori =0,1,2,---,n, then it is true for all; € Z. O
A proof of Lemma 2 is given in the Appendix. A proof of Lemma 3 is given in the Appendix.

Based on these results, the first part of the Theorem can now b@&ased on this result the second part of the Theorem can now be
proved as follows. proved as follows.
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Proof of the Theorem (Part 2), Controllability)Suppose that
is not controllable. Then for some nonzefoe R”

g ,
/ e "G dr=0, forallkez. (17)
0

Writing ¢, = j(NT + T') + T, wherej € Z{ andi €
{0,1,2,---, N}, we can apply Lemma 3 with’ = j(NT + T")
to obtain

et TG dr =0,

i TH5T
/0

Since:T + jT' for j € Z}.,i € Z covers the positive real line
densely by Lemma 2, it follows that

forall j € z§,i € Z (18)

“t
/ e "qgdr=0, forallteR". (19)
0

This implies thatt? ¢f*G' = 0 and hence thaE¢ is not control-
lable.
As a result, controllability of=« implies controllability of¥ .0

IV. THE NUMBER OF STEPS TO OBSERVECONTROL
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VI.

A sampling scheme is presented, which guarantees that sampling
is alwayswithout loss of observability and controllability. With this
scheme the (average) sampling time is noampletely arbitrary
whatever the system parameters are.

The significance of the theoretical result is that it holds for the
set of all nth-order observable (controllable) systems, a set which
is unbounded and open, and this appears to be why the nonrational
sampling time ratidl’/T" enters the picture.

In practiceX¢ is typically from a compact subset, in which case
(since the mappindXc,T,T") — ¥ is continuous) the result is
maintained under sufficiently small perturbationsTofand T’. As
a consequence, irrational ratios need not be implemented exactly
in practice. Moreover, forational sampling time ratios’/7", the
new sampling scheme has an easy interpretation in terms of classical
equidistant sampling with a (fictitious) sampling timel’, the size
of which can be controlled b{"/7T".

The sampling pattern is nonequidistant and periodic, and therefore
the discretized system is periodically time-varying. Feedback laws
can be designed either directly for the time-varying system or by
first condensing the equations of one period into one time-invariant
equation, as in lifting or multirate sampling techniques and then
making a time-invariant design.

CONCLUSIONS

For possible applications of the above result, the number of step<® Possible impact of this result on the choice of sampling patterns

v, which allows (uniform and complete) observation or control, is df

major significance. The following corollary specifies one such

Corollary: If ¢ is observable (controllable) and the samplin

pattern (3)—(5) is used, theR,, is observable (controllable) with
v=(N+1)n. a
A proof of the Corollary is given in the Appendix.
The Corollary implies that is well bounded and thatll observ-
able (controllable) systems of order not exceedihgan be observed
(controlled) in(N + 1)N steps. Moreover, i is rewritten as a

practice, on sampling rate selections, on robustness questions, or
on how it can possibly be used in an adaptive control context, remain
énteresting topics for further research.

APPENDIX

Proof of Lemma 1:Using the notationsd := ¢’7 and¢' =
ef*'¢, the assumption can be written as

HA'¢ =0, fori=0,1,2,---,n—1. (20)

multirate system over one period, then the resulting time-invariant

system will be observable (controllable).

V. RATIONAL SAMPLING TIME Ratio T/T'

Consider a sampling pattern with structure (3) and parameter® Lemma.
T/T' rational and N > n. In order to analyze this case, we need

the following rational counterpart of Lemma 2.
Lemma2’: Let T/T" = p/q, wherep,q € Z* are coprime, and
define AT := T'/q(= T/p). Then

(T 45T i €2,j € Z8Yy = {k- ATk € 7).

O
A proof of Lemma?2’ is given in the Appendix.
The sampling result for the rational case can now be stated in
subsequent Theorem. Its proof follows from Lemmag’1and 3 in

essentially the same way as the proofs in Section Il and is therefore

omitted.

Theorem: If ¢ is discretized using a sampling pattern withVherer

structure (3) and parametefy 7" rational and N > n, thenXp is:
1) observable if and only ifH, ") is an observable pair;
2) controllable if and only if(e” 27, JAT ' AT=TG dr)is a
controllable pair.

The Theorem says that the proposed sampling scheme withyas plus a remainder less than
rational7 /T’ has an effect which is equivalent to that of equidistant

sampling with the fictitious sampling timAT. Note that (whileT

From the Cayley—Hamilton Theorem and the fact thas a matrix
exponential which is nonsingular, it follows that for each Z, A® is
alinear combination ofi®, A',--., A”~". This can be used together
with (20) to conclude thaff A’¢’ = 0 for all i € Z, which proves
a
Proof of Lemma 2:For eachr € 7 we can writerT' as a
(nonnegative) integer multiple df plus a remainder less thdh,
ie.,

T = 5,7+ Apss, €25, A, €10,7). (21)
The sequencd A,,r € ZF} is bounded, and therefore it has
an accumulation point. Consequently, for each 0 there exist
ri,72 € ZF such thatr; <. and|A,, — A,,| <e. So we have
the
§:=A,, — A,

=(ro —r)T = (5,5 — 5.)T € (=€, €) (22)

2 — 7 ands,, — s,, are both inZ$, andé # 0 because
T'/T is not rational.

If 6 >0, then we can writé¢ as a (nonnegative) integer multiple of
6 plus a remainder less thanwhich gives the desired result.df< 0
then the result follows by first taking € Z& such thatt — ¢T is
negative and then writing— ¢7" as a (nonnegative) integer multiple
|
Proof of Lemma&’: From the definition ofAT we havel =
p- AT andT’ = q - AT. ThereforeiT + jT' = AT (ip + jq) and

and T’ can be kept roughly the sam&Y7" can be made small by it remains to be shown that
taking p and ¢ large, and the nonrational case results in the limit as

(p,q) — oo, respectively AT — 0.

lip+iqlicZjezi} =1 (23)
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Any integer multiple ofg can be written as an integer multiple ofit follows that a nonzerg € R" exists such that
p plus a remainder less than i.e., for eachj € Z}

. ot
ja=siptri,  siri €Ly, ri<p. / T TG =0 (29)
ts

The remaindersy,r,---,r,—1 are all different because other-
wise, if two of them (with indicesj: # j» say) were identical,
we would have(ji — j2)g = (s;, — s5,)p and |ji — js| <p, foralls € {k,k+1, -, k+(N+1)n—1}. The set of alls, which are
which contradicts the assumption thatand ¢ are coprime. Hence considered, can equivalently be representediy (N +1)j+ilj €
the set{ro.r1,---,r,_1} equals the sef0,1,2,---,p —1}. Asa 10,1,---,n —1},i € {0,1,.--,N}}. This together with (26) and
consequencéro + pZ, 1 + pZ,- -+, rp_1 + pZ} = Z. From this we the substitutionr = 7' + (NT + T"); allows us to rewrite (29) in
conclude that the set on the left-hand side of (23) contzink is the form

obviously also contained iH. O
Proof of Lemma 3:We denote the integral appearing in (16) by betitt o oo N ,
—F(NT+T")15 —F7' ~ _
L;. Then for each € Z we have /t ¢ [e Ve TG dr' = 0. (30)
k41
t'+(i+1)T o
Li+1—Li:/ f e TGdT
il By the Cayley—Hamilton Theorem (30) extends frofjm €
t'+T T FTi I {0,1,---.,n — 1} to all j € Z. Since this is true for all
= /t, ¢le”)e"Gds i€ {0,1,---, N}, we conclude thaf”(Hl eTe=I"@ dr = 0 for
W4T m—l all ¢ € Z}, and hence thaX ;, is not controllable. By the Theorem of
= / 7 Z ajile Y e G ds Section I, this contradicts the assumption tRat is controllable O
t,
n—1
=> a1 — L) (24) REFERENCES

[1] R. Kalman, B. L. Ho, and K. Narendra, “Controllability of linear
where we used the substitution = T + s in the first place, dynamical systems,” it€ontributions to Differential Equationssol. 1.

New York: Interscience, 1963.
then thFeTfac’t that, by the Cayley-Hamilton TheorfanT eth powe[rz] R. Middleton and J. Freudenberg, “Non-pathological sampling for
of (e )'si € Z,is a linear combination of(c generalized sampled-data hold functiong\titomatica vol. 31, pp.
0,1,2,--+,n — 1, and finally we expressed the resultlng mtegral in  315-319, 1995.
terms of L ;14 —L] = 0 by using the second of the above equalities.[3] A. B. Chammas and C. T. Leondes, “On the design of linear time-
SinceL;y1 — L; =0 forj =0,1,2,---,n — 1 by assumption, invariant systems by periodic output feedback; Part | and IHt” J.

. . . Contr, vol. 27, pp. 885-894, 1978.
the resultZ; = 0 for all i € Z follows recursively from (24). = [4] P. T. Kabamba, “Control of linear systems using generalized sampled-

Proof of the Corollary—Observability:The proof is by contra- data hold functions,lEEE Trans. Automat. Conirvol. AC-32, pp.
diction. Suppose that for somec Z; the stater; cannot uniquely 772-783, 1987. o
be determined from the measurement interftal, tk+(l\"+1)n71]' [5] T.Chen and B. Franciptimal Sampled-Data Control System$New

York: Springer, 1996.

1 n
Then there exists a nonzero vectoe R™ such that [6] S. Barnett, Introduction to Mathematical Control Theary Oxford,

H-BF(LH(,\,+1>J.+7.—Lk,)g U.K.: Clarendon, 1975.
[7] D. M. Wiberg, State Space and Linear System$lew York: McGraw
=0, forallje{0,1,---,n—1} Hill, 1971.
i€{0,1,---,N}. (25)

Since the sampling pattern is periodic, i.€, (v41) — ts =
NT + T for all s € ZF, we have

tep (v = thpi + (NT +T')j (26)

and can rewrite (25) as

H[eF(Nrfﬁ»T’)]jeF(thri715;\,)& —0. (27)

By the Cayley—Hamilton Theorem, (27) extends from €
{0,1,---,n — 1} to all j € Z. Because this is true for all

i € {0.1,---.N}, we conclude thatH et +:=t)¢ = ( for all

¢ € 7} and hence thaEp is not observable. By the Theorem of
Section Il, this contradicts the assumption that is observable.
Controllability: Suppose that for somek € Z7 and
2,2 € R" there does not exist a control sequence
{ur, urgr, -, upp(nv41)n—1}, Which transfers the state from
T = ' to Te(N+1)n = 2.
We denotek” := k 4+ (N + 1)n. Since we have

—Ft — [t F
e Ry +e” Flogr = E / e TG dru,, (28)
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