
E9:261

29-02-2016

Recap ...

- Dynamic programming
 - solving an optimal search with sub-paths being optimal
- Dynamic Time Warping
 - Constraints on the path
 - end-point constraints
 - monotonicity constraints
 - local constraints
 - global constraints
 - slope weighting
- DTW recursive solution

Local constraints in DTW

"Fundamentals of Speech Recognition", Rabiner and Juang

DTW Solution

1. Initialization

$$D_A(1,1) = d(1,1)m(1).$$

1

2. Recursion

For $1 \le i_x \le T_x$, $1 \le i_y \le T_y$ such that i_x and i_y stay within the allowable grid, compute

$$D_A(i_x, i_y) = \min_{\substack{(i'_x, i'_y)}} [D_A(i'_x, i'_y) + \zeta((i'_x, i'_y), (i_x, i_y))],$$

where $\zeta((i'_x, i'_y), (i_x, i_y))$ is defined by Eq. (4.162).

3. Termination

$$d(\mathcal{X},\mathcal{Y})=\frac{D_A(T_x,T_y)}{M_\phi}.$$

$$\zeta((i'_x, i'_y), (i_x, i_y)) = \sum_{\ell=0}^{L_y} d(\phi_x(T' - \ell), \phi_y(T' - \ell)) m(T' - \ell)$$

"Fundamentals of Speech Recognition", Rabiner and Juang

Disadvantages of DTW

- Based on heuristics
- Creating templates from large number of examples can be hard.
- With large vocabulary sizes, computationally intractable.
- Not a statistical method.