E9 261

09-03-2016

Recap ...

Solution to HMM-GMM re-estimation

$$\pi_i = \frac{\sum_{e=1}^E \gamma_i^e(1)}{E}$$

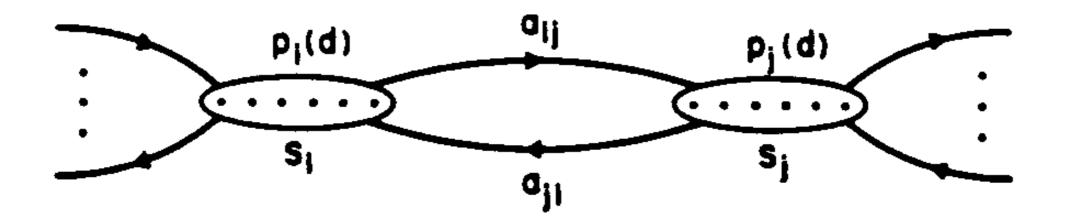
$$c_{i\ell} = \frac{\sum_{e=1}^{E} \sum_{t=1}^{T_e} \gamma_{i\ell}^e(t)}{\sum_{e=1}^{E} \sum_{t=1}^{T_e} \gamma_{i}^e(t)}$$

$$\mu_{i\ell} = \frac{\sum_{e=1}^{E} \sum_{t=1}^{T_e} \gamma_{i\ell}^e(t) o_t^e}{\sum_{e=1}^{E} \sum_{t=1}^{T_e} \gamma_{i\ell}^e(t)}$$

Left to right versus Ergodic HMMs

Other Considerations

- Implementation issues
 - Scaling
- Explicit duration modeling in HMM



Forward Recursion in Duration Model HMM

$$\alpha_{t}(i) = \sum_{q} \sum_{d} \pi_{q_{1}} \cdot p_{q_{1}}(d_{1}) \cdot P(\mathbf{o}_{1} \mathbf{o}_{2} \dots \mathbf{o}_{d_{1}} | q_{1})$$

$$\cdot a_{q_{1}q_{2}} p_{q_{2}}(d_{2}) P(\mathbf{o}_{d_{1}+1} \dots \mathbf{o}_{d_{1}+d_{2}} | q_{2}) \dots$$

$$\cdot a_{q_{r-1}q_{r}} p_{q_{r}}(d_{r}) P(\mathbf{o}_{d_{1}+d_{2}+\dots+d_{r-1}+1} \dots \mathbf{o}_{t} | q_{r})$$
(6.67)

where the sum is over all states q and all possible state durations d. By induction we can write $\alpha_l(j)$ as

$$\alpha_t(j) = \sum_{i=1}^{N} \sum_{d=1}^{D} \alpha_{t-d}(i) a_{ij} p_j(d) \prod_{s=t-d+1}^{t} b_j(\mathbf{o}_s)$$
 (6.68)

where D is the maximum duration within any state. To initialize the computation of $\alpha_l(j)$ we use

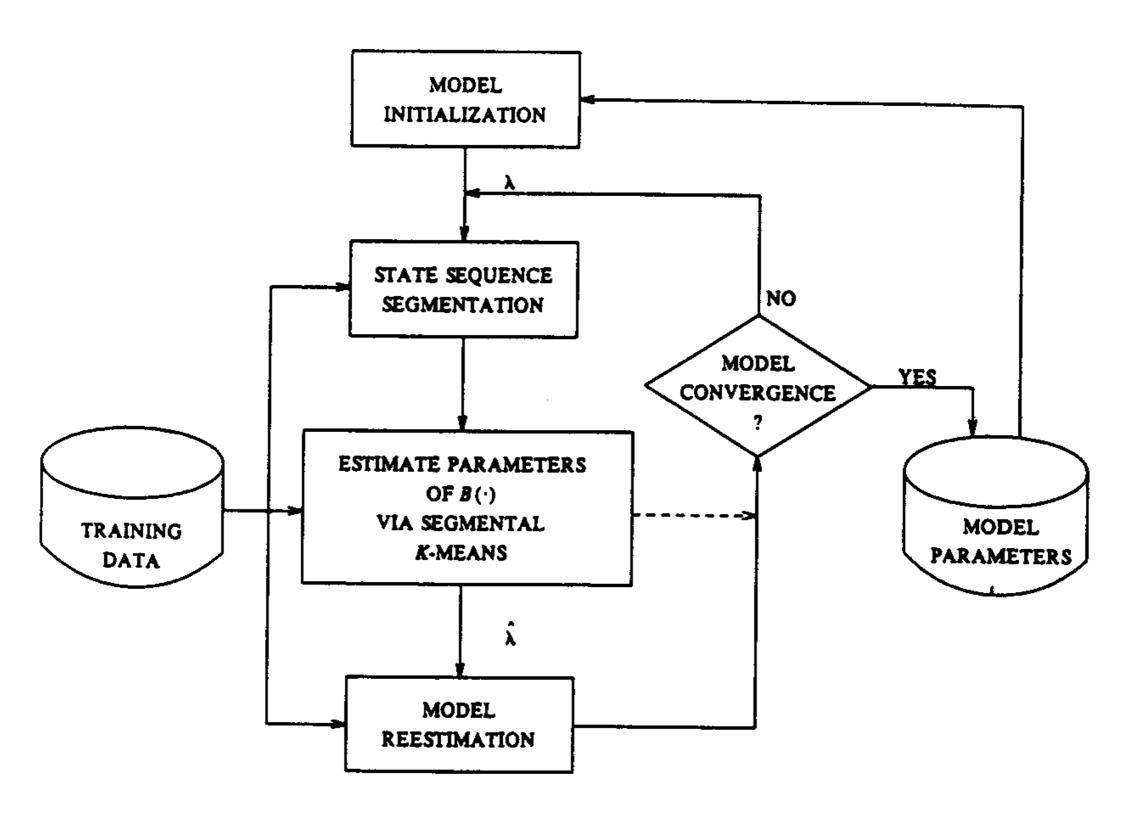
$$\alpha_1(i) = \pi_i p_i(1) \cdot b_i(\mathbf{o}_1) \tag{6.69a}$$

$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

Other Considerations

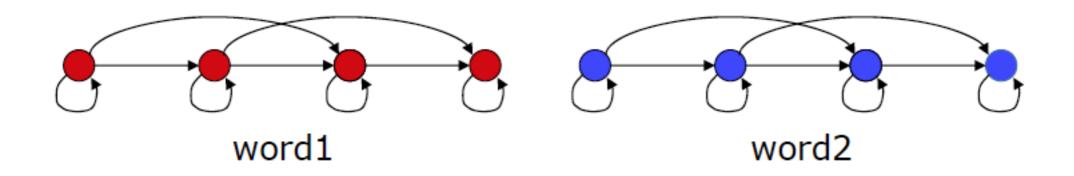
- Implementation issues
 - Scaling
- Explicit duration modeling in HMM
- Comparison of HMMs
- ML versus Bayesian Estimation
- Multiple observation sequence
- Initialization Flat start

Segmental k-means Algorithm

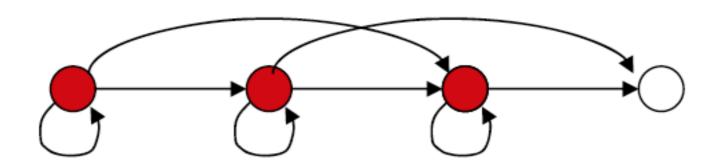


Dealing with Continuous Speech

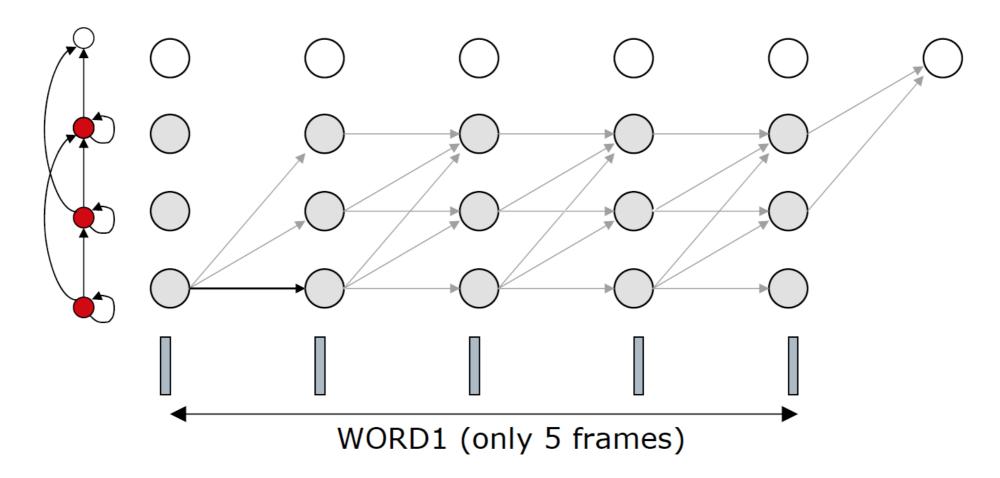
- Isolated Word Recognition is limited
 - Need to deal with string of words
- Word sequences modeled with HMMs which are composed of word HMMs
- Given two words which are both Bakis topology



Introducing Non-emitting states

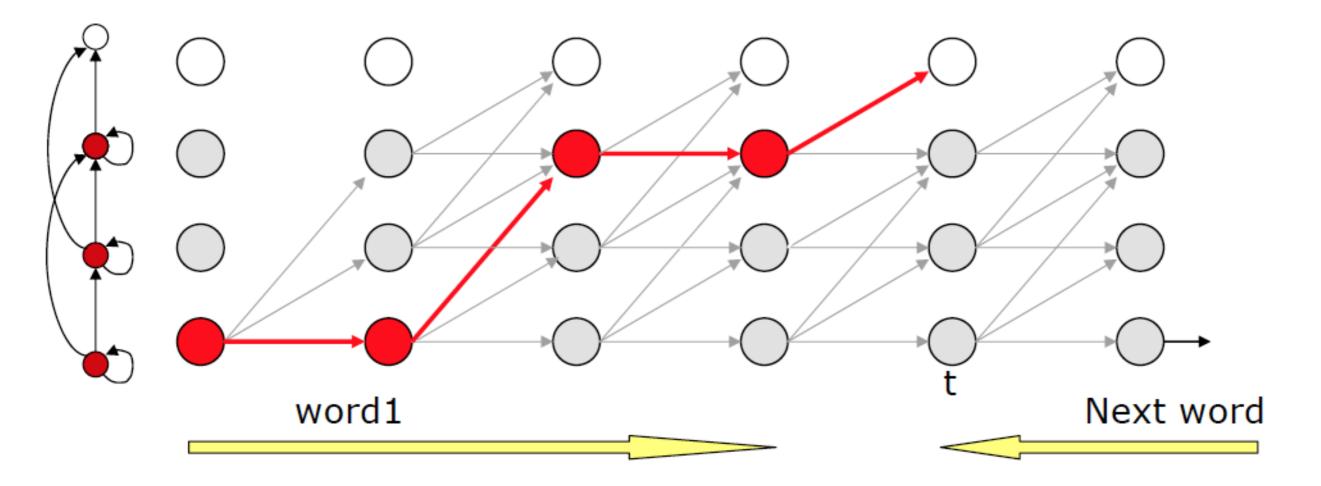


Non-emitting or null states where no observation is emitted



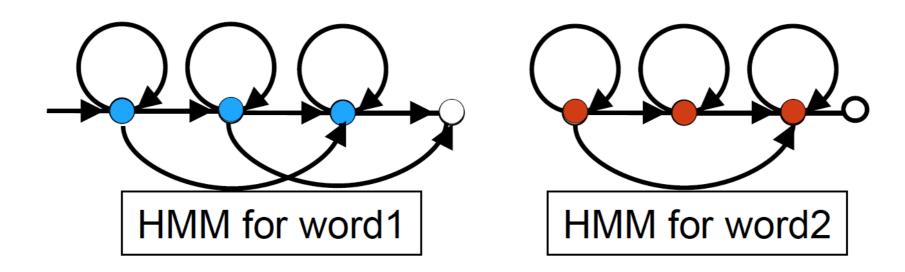
Introducing Non-emitting states

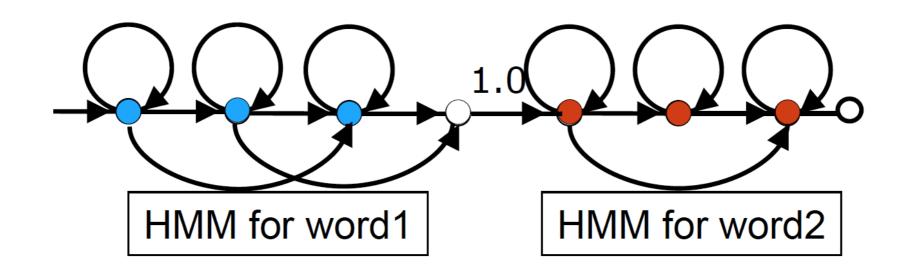
Slight modifications to forward and backward recursion



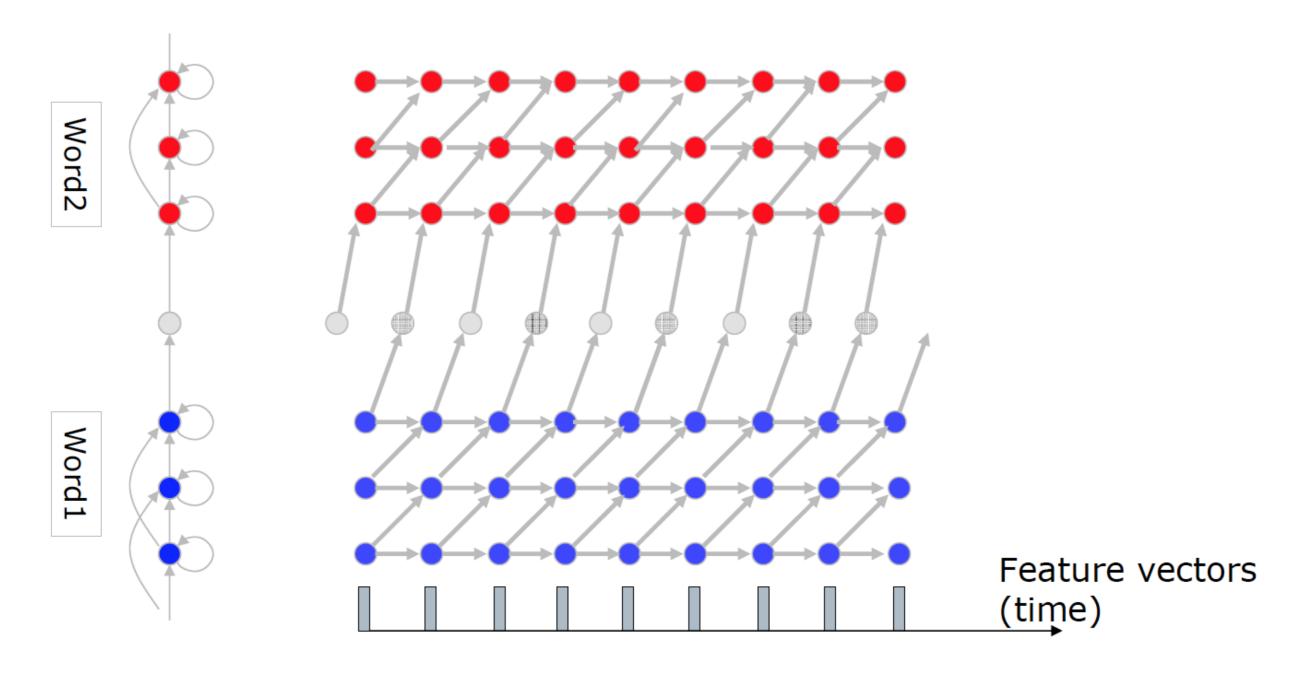
 Probability of reaching state N+1 at time t is equivalent to the probability of exiting word1 at time t

Connecting Word HMMs





 One can also introduce the probability of word2 following word1 in this case.



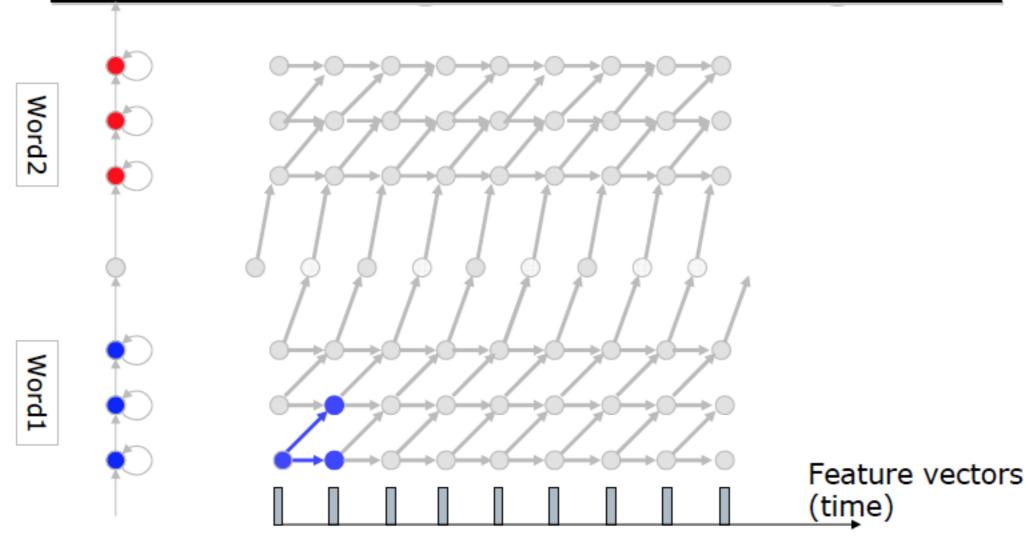
 Null states don't have time instant associated so they happen between two time instants.

Forward Through a non-emitting State



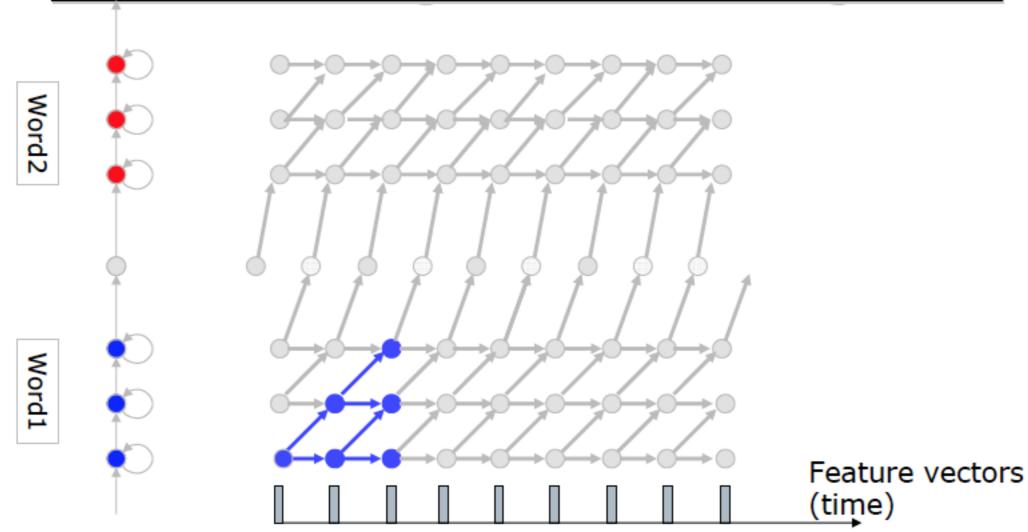
 At the first instant only one state has a non-zero forward probability

Forward Through a non-emitting State



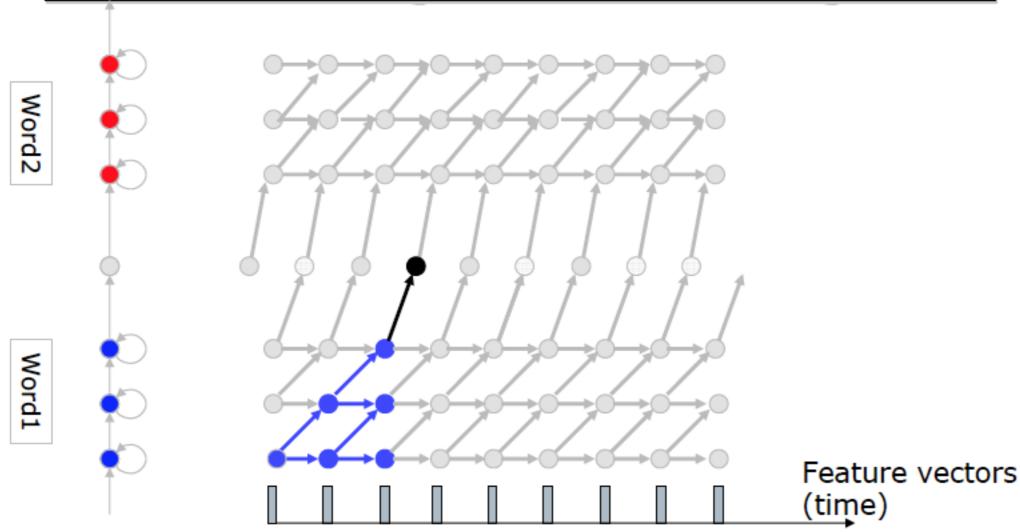
- From time 2 a number of states can have non-zero forward probabilities
 - Non-zero alphas

Forward Through a non-emitting State



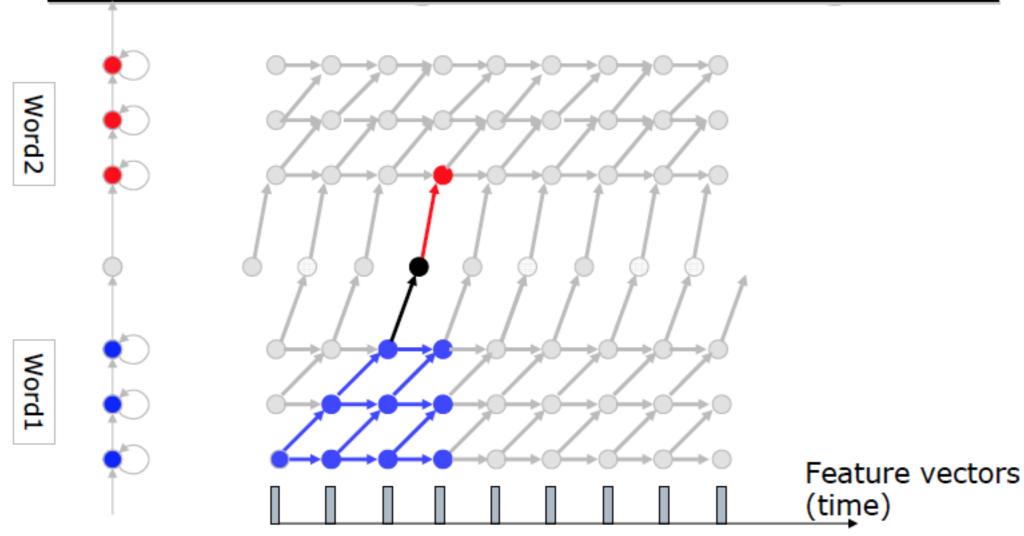
- From time 2 a number of states can have non-zero forward probabilities
 - Non-zero alphas

Forward Through a non-emitting State



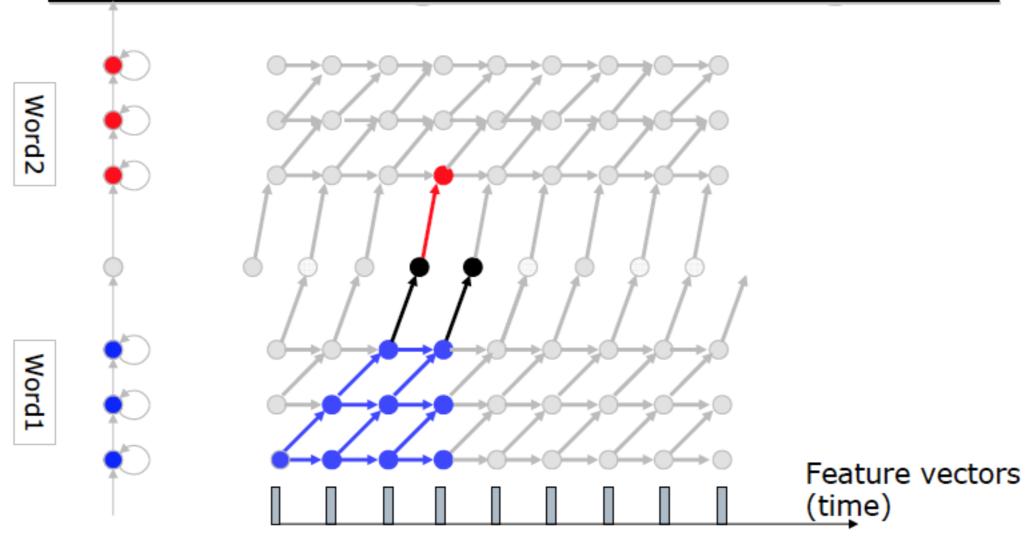
Between time 3 and time 4 (in this trellis) the non-emitting state gets a non-zero alpha

Forward Through a non-emitting State



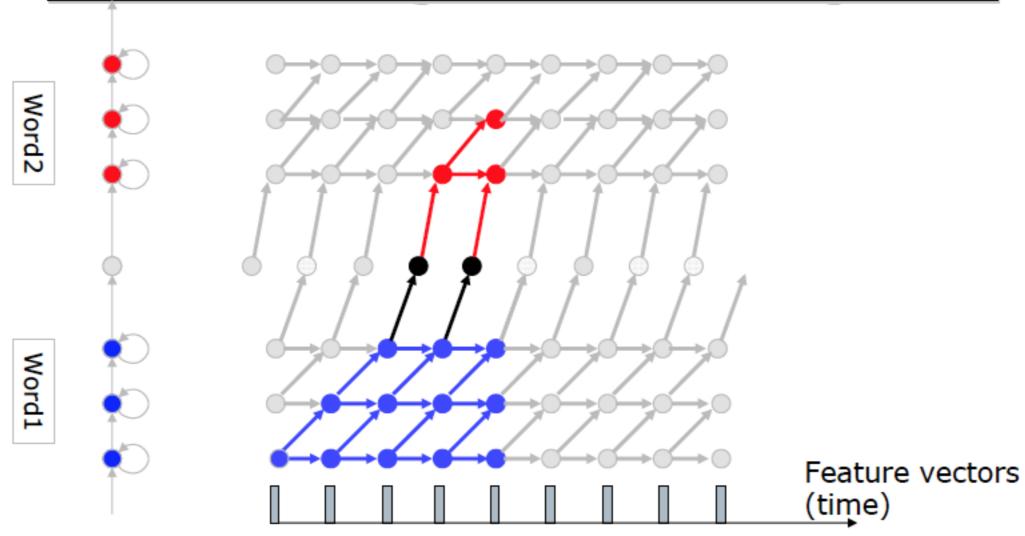
At time 4, the first state of word2 gets a probability contribution from the non-emitting state

Forward Through a non-emitting State



Between time4 and time5 the non-emitting state may be visited

Forward Through a non-emitting State



At time 5 (and thereafter) the first state of word 2 gets contributions both from an emitting state (itself at the previous instant) and the non-emitting state