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Speech Perception and Cochlear Signal Processing

S
peech perception is a complex 
process that involves multiple 
stages of signal processing. 
Once the acoustic signal 
reaches the human cochlear, 

it is decomposed into many critical 
bands on the basilar membrane. The 
cochlear nucleus then encode the tem-
poral and frequency information in a 
way that is meaningful to the central 
auditory system. 

INTRODUCTION 
A major goal of speech perception 
research is to determine how the speech 
information is represented across the 
various stages. The research methods 
can be classified into three major types, 
i.e., the psychophysical, computational, 
and neurophysiological methods. The 
psychophysical approach [8], [9], [4], 
which was initiated by Harvey Fletcher 
and his colleagues in the 1920s, involves 
presenting subjects with speech stimuli 
and measuring their conscious responses 
without touching the intermediate 
speech decoding process within the audi-
tory system. The computational models 
[10] are created for the simulation of 
speech perception behavior observed in 
psychoacoustic tests. The neurophysio-
logical approach [7], [13] measures the 
detailed information of single-unit neu-
ron response to trace the representation 
of speech signal through the subsequent 
stages of auditory processing. 

After about 100 years of work, very 
little is know about how the ear decodes 
basic speech sounds. This is, in part, 
because it is not ethical to record in the 
human auditory nerve, and its not 
 practical to do extensive speech psy-
chophysics in nonhuman animals. 

PERCEPTION OF 
SPEECH PHONEMES
The earliest studies started in the 1920s 
at Bell Labs, by Harvey Fletcher and his 
colleagues [8], [9]. Then in the 1950s, a 
group of speech scientists from Haskins 
Labs did a classic set of studies [5], [6] 
that indicated that speech was composed 
of smaller building blocks of narrow 
band bursts and resonances. During the 
1970 and 1980s, Blumstein and Stevens 
[4] expanded on the Haskins work, but 
again, no definitive conclusions were 
reached, in part because synthetic speech 
was used, rather than real speech. 

CONFUSION GROUPS
It is well known that the performance of 
a communication system is dependent 
on the symbols. The larger the “distance” 
between two symbols, the less likely the 
two will be confused, and the lower the 
error rate. This principle also applies to 
the human speech code. In a classic 1955 
study [11], Miller and Nicely (MN55) col-
lected the confusion matrices of 16 con-
sonants /pa, ta, ka, fa, ua, sa, ea, ba, da, 
ga, va, ða, za, a, ma, and na/ in white 
noise. The analysis of these data have 
shown that the consonants form natural 
confusion groups. 

For example, Figure 1(a) shows 
group-average data from MN55. Each 
curve corresponds to the probability of 
reporting the labeled sound when /ta/ is 
presented. It is seen that /pa, ta, and ka/ 
form a confusion group (or perceptual 
group) at approximately 28 dB signal-
to-noise ratio (SNR). When the SNR is 
decreased below 215 dB, consonant 
group /fa, ua, sa, and ea/ merges with the 
/pa, ta, and ka/ group, forming a super 
group. At very low SNRs, where no 
speech is audible, all the sounds asymp-
totically reach the chance performance 

of 1/16, shown by the dashed line in 
Figure 1(a). Thus the confusion patterns 
form a hierarchical structure. 

A recent repeat of the MN55 study 
now provides similar data but, for indi-
vidual utterances, and these unaver-
aged data shown in Figure 1(b) tell a 
very different story. 

MORPH AND PRIME
Analysis of individual utterances reveals 
that as the noise level increases, certain 
“weak” /ta/s morph (change) into /pa/ or 
/ka/. For example, the /ta/ from a male 
talker 111 [Figure 1(b)] at 3 dB SNR, /p/ 
confusions overtake /t/ response. In other 
words, most listeners hear /pa/ rather 
than the target sound /ta/ as the noise in 
increased. This morphing effect, while at 
first surprising, is typical in our single 
consonant confusion database. 

Speech tests also show that when the 
scores for consonants of a confusion 
group are similar, listeners can prime 
between these phones. For example, in 
Figure 1(b), the probabilities of /pa/ and  
/ta/ are equal at 3 dB SNR. At this SNR, 
most listeners can mentally select the 
consonant heard (i.e., prime), thus mak-
ing a conscious choice between the two 
consonants. Based on our studies, it is 
suspected that priming occurs when 
events, shared by consonants of a confu-
sion group, are at the threshold of audi-
bility, namely when the distinguishing 
feature is at its masked threshold. 

The fact that consonant sounds form 
natural groups [e.g., /p/, /t/, /k/ in 
Figure 1(b)] and that one sound may 
turn into another sound under noisy 
conditions clearly demonstrates that 
speech perception is based on discrete 
units. From our recent analysis of conso-
nant confusions, the exact nature of the 
acoustic cues has now been discovered. 

Jont B. Allen and Feipeng Li 
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MODELING SPEECH RECEPTION
The cochlea is a nonlinear spectrum 
analyzer. Once a speech sound reaches 
the cochlea, it is represented by time-
varying energy patterns across the basi-
lar membrane (BM). A small subset of 
the patterns contribute to speech recog-
nition. The purpose of event identifica-
tion is to isolate this small specific 
feature subset. 

To understand how speech sounds are 
represented on the BM, we have developed 
the AI-gram, for the visualization of the 
speech sounds, a what-you-see-is-what-
you-hear (WYSIWYH/wisiwai/) tool, that 
simulates human auditory peripheral pro-
cessing, The name derives from the well-
known speech Articulation Index (AI), 
developed by Fletcher [1]. 

THE AI MODEL 
Fletcher’s AI model is an objective 
appraisal criterion of speech audibility. 
Based on the work of speech articula-
tion over communication systems at 
Bell Labs, French and Steinberg devel-
oped a method for the calculation of AI 
[9], [8], [1]. The concept of AI is that a 
narrow band (i.e., a cochlear critical 
band) of speech frequencies carries a 
partial contribution to the total intelli-
gibility, in a band-independent way. 
The total contribution of all bands is 
thus a sum of the contribution of the 
separate bands 

 AI 1SNR 2 5 1
Ka

K

k51
AIk,  (1) 

where AIk is the specific AI for the kth 
articulation band, defined by 

 AIk5min
snr  c 13 log10 111 c2snrk

2 2 , 1 d , 
 (2)

and where snrk
2 ; ss1n

2 /sn
2 is the speech 

to noise mean-squared (MS) ratio in the 
kth frequency band and c < 2 is the crit-
ical band speech-peak to noise-rms ratio 
[9]. Given the AI(SNR), the predicted 
average speech error is [1] 

 ê 1AI 2 5 emin
AI    #  echance, (3) 

where emin is the minimum error when 
AI5 1, and echance is the probability of 
error due to uniform guessing [1]. 

THE AI-GRAM 
The AI-gram is the integration of a sim-
ple linear auditory model filter-bank and 
the Fletcher’s AI model [i.e., Fletcher’s 
SNR model of detection]. Figure 2 depicts 
the block diagram of AI-gram. Once the 
speech sound reaches the cochlea, it is 
decomposed into multiple auditory filter 
bands, each followed by an “envelope” 
detector. Fletcher-audibility of the nar-
row-band speech is predicted by the for-
mula of specific AI (2). A time-frequency 
pixel of the AI-gram (a two-dimensional 
image) is denoted AI 1t, f 2 , where t and f  
are time and frequency. The implementa-
tion used here quantizes time to 2.5 [ms] 
and uses 200  frequency channels, 

 uniformly distributed in place according 
to the Greenwood frequency-place map 
of the cochlea, with bandwidths accord-
ing to the critical bandwidths of [2]. 

Given a speech sound, the AI-gram 
provides an approximate image of the 
effective components that are audible to 
the central auditory system. However, it 
does not label or identify those compo-
nent critical for speech recognition. To 
find these, it is necessary to correlate the 
results of the speech perception experi-
ments and the AI-grams. 

IDENTIFICATION OF 
CONSONANT EVENTS
A method we call the three-dimensional 
(3-D) approach was developed to assess 
the significance of audible components 
to speech recognition, as predicted by 
the AI-gram. To isolate events along 
time, frequency and amplitude speech 
sounds are truncated in time, high-/low-
pass filtered, or masked with white noise, 
before being presented to a panel of nor-
mal hearing listeners. Once an acoustic 
cue critical for speech perception has 
been masked, the sound’s recognition 
score is greatly reduced. 

3-D APPROACH
To measure the weight of a feature to 
speech perception, for a particular con-
sonant sound, the 3-D approach requires 
three different experiments. Each experi-
ment had 18 talkers and between 15–25 
listeners. The first experiment (TR07) 
determines the contribution of various 
time intervals by truncating the conso-
nant into multiple segments of 5, 10, or 
20 ms per frame, depending on the dura-
tion of the sound. The second experi-
ment (HL07) divides the fullband into 12 
bands of equal length along the BM, thus 
labeling the importance of different fre-
quency bands by using high-pass/low-
pass filtered speech as the stimuli. Once 
the time-frequency coordinates of the 
event are identified, the third experiment 
(MN16R) assesses the event strength by 
masking the speech at 218, 212, 26, 0, 
6, 12, 18 dB SNR, and no noise (quiet). 

Figure 3 displays the experimental 
results of TR07, HL07, and MN16R, 
 showing the probabilities of responses 
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[FIG1] Confusion patterns (CPs) of /ta/ in white noise. (a) Average CPs of 18 /ta/s (data 
from MN55) reveal that /p/, /t/ and /k/ form a confusion group that are distinctive from 
other consonants. (b) CP of a /ta/ pronounced by a male talker m111. At 0 dB SNR most 
listeners report this sound as a /pa/. 
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(the target and competing sounds), as a 
function of the experimental conditions, 
i.e., truncation time, cutoff frequency, 
and SNR. To facilitate the integration of 
the information, the results are arranged 
into a four-panel format, with the 
AI-gram depicted in the lower left panel 
and the recognition scores of TR07 and 
HL07 aligned in time (tn in centiseconds 
[cs]) and frequency (along the cochlear 
place axis, but labeled in characteristic 
frequency [kHz]). 

In Figure 3, there are six sets of four 
panels. Each of the six sets corresponds 
to a specific consonant, labeled by a  
string that defines the gender (m, f), sub-
ject ID, consonant and SNR for the dis-
play. For example, in the upper left four 
panels we see the analysis of /ta/ for 
female talker 105 at 0 dB. Along the top 

are unvoiced plosives /t/, /k/, and /p/, 
while voiced plosives /d/, /g/, and /b/ are 
along the bottom. Three different talkers 
have been used in this analysis. 

One may identify the speech event 
from these displays. For example, the 
feature that labels the sound (e.g., /t/) 
is indicated by the blue square in the 

lower-left panel of each of the six 
sounds (e.g., to the left of 105ta@0dB) 
there is a blue box showing the burst of 
energy that defines the /t/ sound]. 
According to our 20 listeners in the 
TR07 experiment, when this burst is 
truncated, the /t/ morphs to /p/. When 
masking noise is added to the sound, 

[FIG2] Block diagram of AI-gram. 
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[FIG3] Identification of features by time and frequency bisection. Along the top are unvoiced consonants /t/, /k/, and /p/, while the 
corresponding voiced consonants /d/, /g/ and /b/ are along the bottom. Each of the six sounds consists of four subpanels depicted in a 
compact form such that the AI-gram and the three scores are aligned in time ( tn in centiseconds [cs]) and frequency. For example, for /t/ 
(upper left), we see four panels consisting of the time-truncation confusions (upper left), the score versus SNR (upper right), the 
AI-gram (lower left), and the low-pass (red) and high-pass (blue) score as a function of cutoff frequency (lower right). 
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such that it masks the boxed region, 
the percept of /t/ is lost. When the 
high- and low-pass filters remove 
the frequency of the /t/ burst, again the 
consonant is lost. Thus the three exper-
iments are in agreement, and they 
uniquely isolate the location of the 
event responsible for /t/. 

This nicely generalizes to the other 
plosive consonants shown (i.e., /t/, /k/, /p/, 
/d/, /g/, and /b/). From such data we see 
that /t/ is labeled by a 4 kHz burst of 
energy <50 ms before the vowel, where-
as /k/ is defined as a 1.4–2 kHz burst, also 
<50 ms before the vowel. A burst of 
energy leading the vowel at 0.7–1 kHz 
defines the /p/. The three voiced sounds 
/d/, /g/, and /b/ have similar frequencies 
but are presented at the same time as the 
vowel onset. 

The two high-frequency sounds (top 
and bottom left of Figure 3) are /t/ and 
/d/, each produced with the tongue tip 
on the roof of the mouth and slightly 
behind the teeth. The two midfrequency 
sounds, /k/ and /g/ are produced with 
the back of the tongue, labeled in the 
frequency domain as bursts between 
1.4–2 kHz, for the examples shown. 
Finally low- frequency /p/ and /b/ are 
produced with the release of the lips. 
These two sounds produce a very low-
frequency burst between 0.7 and 1 kHz. 
The exact relationship between the 
place of the burst feature and the burst 
frequency needs further explanation.  

We have analyzed all 128 sounds in 
our consonant ID database and similar 
results have been found. Thus, we are 
confident that these tags of energy label 
the identity of these consonants. The dis-
tributions of the burst frequencies, dura-
tions, and delays to voicing need further 
study, especially for the case of vowels 
other than /a/, used here. 

OVERVIEW OF 
CONSONANT EVENTS
Figure 4 provides a schematic drawing 
of the events of initial consonants pre-
ceding vowel /a/. The stop consonants 
are characterized by the center frequen-
cy of the burst, caused by the sudden 
release of pressure in the oral cavity. 
Besides the voice bar, the voiced and 
unvoiced stops differ mainly in the dura-
tion of the transition. The fricatives are 
characterized by an onset of wideband 
noise created by the turbulent airflow 
through lips and teeth. Duration and 
frequency range are the two critical 
parameters for fricatives. A voiced frica-
tive usually has a considerably shorter 
duration than its unvoiced counterpart. 
The events of the consonants are consis-
tent across the different talkers, despite 
that the parameters, such as timing, fre-
quency, and strength may change, to a 
certain degree, within the given range. 

To further verify these results, we 
have developed a method to modify the 
speech sounds using the short-time 

Fourier transform (STFT) [3]. For the 
stop consonants, it is shown that /pa/, 
/ta/, and /ka/ can be converted into each 
other simply by modifying the burst 
amplitude. Removing the /ka/ burst in 
the mid frequency turns a /ka/ into a /ta/ 
or /pa/; boosting the onset in the high 
frequency turns the weak /t/ sound into a 
noise-robust /ta/; the same sound turns 
into a well-articulated and natural /pa/ if 
both the onsets in the high frequency 
and midfrequency are removed. Similar 
conversions can be made to the voiced 
stop consonants, /ba/, /da/, and /ga/. For 
the fricatives, we demonstrate the con-
version of /ea/ S /sa/ S /za/ S /ða/ sim-
ply by cutting the duration or bandwidth 
of the frication region. Examples of these 
modifications may be found at http://
hear.ai.uiuc.edu/wiki/Files/VideoDemos. 

COCHLEAR SIGNAL PROCESSING
The cochlea plays a vital role in speech 
perception. Once the cochlea is dam-
aged, the ability to process speech in  
noise is seriously degraded. The main 
functions of cochlea are to separate 
the input acoustic signal into overlap-
ping frequency bands and to compress 
the large acoustic intensity range into 
the much smaller mechanical and elec-
trical dynamic range of the inner hair 
cell [2]. The auditory neurons then con-
vert the signal into neural spikes and 
send them to the auditory system. This 
raises the basic question of information 
processing by the ear. The eye plays a 
similar role as a peripheral organ. It 
breaks the light image into rod- and 
cone-sized pixels, as it compresses the 
dynamic range of the visual signal. 
Based on the intensity just-noticeable 
difference (JND), the corresponding 
visual dynamic range is about 9–10 
orders of magnitude of intensity, while 
the ear has about 11–12 [2]. Neurons 
are low-bandwidth channels. The stimu-
lus has a relatively high information 
rate. The eye and the ear must cope with 
the bandwidth problem by reducing the 
stimulus to a large number of low-
bandwidth signals. It is then the job of 
the cortex to piece these pixelized sig-
nals back together, to reconstruct the 
world as we see and hear it. 
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[FIG4] Structure of the plosives and the fricatives, in terms of time-frequency allocation. 
Mapping these regions into events requires extensive perceptual experiments. But once 
the sounds have been evaluated, it is possible to prove where the key noise-robust 
events live in perceptual space. 
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SENSORINEURAL HEARING LOSS
Most sensorineural hearing loss can be 
attributed to the malfunction of cochle-
ar outer hair cells (OHCs) and inner 
hair cells (IHCs). Damage to OHCs 
reduces the vibration of the cell’s cilia 
at the stimulus frequency, resulting in 
an elevated detection threshold. 
Damage to the IHCs reduces the effi-
ciency of mechanical-to-electrical trans-
duction, also resulting in an elevated 
detection threshold. The audiometry 
configuration is not a good indicator of 
the physiological nature of the hearing 
loss [12], specifically, subjects with 
OHC and IHC loss may show the same 
amount of shifting in hearing thresh-
old, yet the influence of the two types of 
hearing loss on speech perception can 
be very different. 

The loss of IHCs has a serious impact 
on speech perception, as supported by 
the results of an elderly subject (AS) with 
moderate hearing loss, who volunteered 
in our pilot study of hearing-impaired 
speech perception. Due to a cochlear 
dead region (an extreme case of IHC loss 
[12]) from 2–3.5 kHz, where the percep-
tual cues for /ka/ and /ga/ are located, AS 
cannot hear these two sounds with her 
left ear. In contrast, her right ear can 
hear /ka/ and /ga/ (with low accuracy), 
despite the fact that the two ears have an 
almost identical hearing threshold. A 
consonant confusion analysis shows that 
more than 80% of the /ka/s are misinter-
preted as /ta/, while about 60% of the 
/ga/s are reported as /da/. 

It is well known that noise damage of 
“nerve cells” (i.e., OHCs) leads to loudness 
recruitment, the most common form of 
neurosensory hearing loss, characterized 
as the reduction in dynamic range. To suc-
cessfully design hearing aids that deal with 
the problem of recruitment, we need mod-
els to improve our understanding of how 
the cochlea achieves its dynamic range. 
Given the observations shown here as 
speech events, we need to extend our 
primitive understanding of wide-dynamic 
range compression into the time domain. 

It is also conjectured that speech onsets 
will be enhanced by OHC processing, due 
to the overshoot observed in the auditory 
nerve timing. In the hearing impaired ear, 

such enhancements would be gone, there-
fore this extra “kick” of response would 
not be available in those ears. 

SUMMARY
Speech sounds are encoded by time-vary-
ing spectral patterns called acoustic cues. 
The processing and detection of these 
acoustic cues lead to events defined as the 
psychological correlates of the acoustic 
cues. Due to the similarity between the 
acoustic cues, speech sounds form natural 
confusion groups. When the feature of the 
sound within a group is masked by noise, 
one event can turn into another. A system-
atic psychoacoustic “3-D method” has 
been developed to explore the perceptual 
cues of stop consonants from naturally 
produced speech sounds. For each sound, 
our 3-D method measures the contribu-
tion of each subcomponent by time-trun-
cating, high-pass/low-pass filtering, and 
masking with noise. The AI-gram, a visu-
alization tool that simulates the auditory 
peripheral processing, is used to predict 
the audible components of the speech 
sound. The results are that the plosive 
consonants are defined by a short duration 
bursts characterized by their center fre-
quency, as well as the delay to the onset of 
voicing. Fricatives are characterized by the 
duration and bandwidth of a noise-like 
feature. Pilot studies of hearing-impaired 
(HI) speech perception indicate that 
cochlear dead regions have a considerable 
impact on consonant identification. An HI 
listener may have problems understanding 
speech simply because he/she cannot hear 
certain sounds, since the events are miss-
ing due to either the hearing loss, or the 
masking effect introduced by the noise. 
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