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ABSTRACT We consider the problem of optimal unsignalized intersection management, wherein we
seek to obtain safe and optimal trajectories, for a set of robots that arrive randomly and continually. This
problem involves repeatedly solving amixed integer program (with robot acceleration trajectories as decision
variables) with different parameters, for which the computation time using a naive optimization algorithm
scales exponentially with the number of robots and lanes. Hence, such an approach is not suitable for
real-time implementation. In this paper, we propose a solution framework that combines learning and
sequential optimization. In particular, we propose an algorithm for learning a shared policy that given the
traffic state information, determines the crossing order of the robots. Then, we optimize the trajectories
of the robots sequentially according to that crossing order. This approach inherently guarantees safety
at all times. We validate the performance of this approach using extensive simulations and compare our
approach against 5 different heuristics from the literature in 9 different simulation settings. Our approach, on
average, significantly outperforms the heuristics from the literature in various metrics like objective function,
weighted average of crossing times and computation time. For example, in some scenarios, we have observed
that our approach offers up to 150% improvement in objective value over the first come first serve heuristic.
Even on untrained scenarios, our approach shows a consistent improvement (in objective value) of more
than 30% over all heuristics under consideration. We also show through simulations that the computation
time for our approach scales linearly with the number of robots (assuming all other factors are constant). We
further implement the learnt policies on physical robots with a few modifications to the solution framework
to address real-world challenges and establish its real-time implementability.

INDEX TERMS Robot coordination, Deep reinforcement learning, Autonomous intersection management,
Warehouse automation

I. INTRODUCTION

UNSIGNALIZED intersection management [1] requires
that a number of robots coordinate their trajectories

for ensuring safe and efficient use of the intersection. This
problem and its parts have been studied under various names
like Cooperative intersection management [1], Intersection
management of CAVs [2], Coordination of CAVs at intersec-
tion [3], [4], Cooperative intersection control/crossing [5]–
[7], Coordination at unsignalized intersections [8], Au-
tonomous intersection management [9] etc. Its application
can be found in contexts like automated warehouses with

hundreds or thousands of mobile robots. The problem of op-
timal unsignalized intersection management involves getting
optimal and safe trajectories for the considered robots to cross
the intersection. Note that optimal trajectories inherently de-
termine an optimal crossing order. Solution methods to such a
problem inherently involves repeatedly solving mixed integer
programs, for which the computational complexity of naive
optimization methods scales very badly with the number of
robots and lanes. As a result, they are not suitable for real-
time implementation. In this work, we propose a learning
based solution framework to get safe, near-optimal solutions
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in real-time, a combination that is not addressed in any single
framework in the literature.

A. RELATED WORK
Unsignalized intersection management for robots or con-
nected and automated vehicles has been studied using differ-
ent methods and tools over the years. Surveys in [1], [10], [2]
and [11], [12] give a detailed description of the recent litera-
ture. Here we focus on the optimal unsignalized intersection
management problem, which is a very common formulation
in the area. While some formulate this problem as a mixed
integer linear program [3], [13]–[15], others consider a model
predictive control approach [4] and some formulate a non-
linear problem and use genetic algorithms to solve it [5],
[6]. While typically the optimization goal is to minimize the
cumulative travel times or maximize the cumulative distance
covered by all the robots, recent works like [7], [16]–[18]
also take energy consumption into account while computing
the optimal trajectories. Works like [9], [19] discretize the
space and use A∗ like algorithms to get collision free optimal
trajectories for the participating agents.

As naive or generic optimization methods for these prob-
lems scale very badly with the number of robots and lanes,
there is also interest in developing computationally sim-
pler solution methods. With this motivation, [8], [20]–[22]
propose solutions that cluster the vehicles/robots in order
to reduce the computational or communication effort. To
address computational complexity, works like [23] describe
general ideas of prioritized motion planning for coordination
among multiple agents, but, assuming the knowledge of some
pre-assigned priorities to each agent. Similarly, in line with
prioritized planning idea, some other works, such as [14],
[24] use model based heuristics to decide the crossing order
and solve centralized/decentralized optimization problems
preserving that order to get the trajectories for involved robots
in an intersection. Work [25] uses a similar approach for
the ramp merging problem. While some works like [26],
[27] consider finding optimal and safe trajectories to robots
assuming a priority (e.g. first-in first-out) rule, some like [28],
[29] propose an optimization problem to get such priority
rule and solve another optimization problem (in receding
horizon control framework) to get trajectories. Work [30]
proposes a two-stage optimization method combining the
discrete tile and conflict point methods. In [31], optimization
based methods are proposed for intersection management
with bounded location uncertainties of agents. Other ap-
proaches to the problem include auction based methods [32],
[33] and first come first serve based reservation of regions
against time [19]. Work in [33] proposes a game-theoretic
social-welfare optimal auction strategy to decide the crossing
order. Others [4], [34] construct/use a priority graph to get
feasible solutions and conflict resolution. Work [35] proposes
an algorithm which improves upon the reservation based
strategy. Work [18] uses similar approach to the intersection
management problem and computes the priority/crossing
order using a set of features associated with the robots. Then

the robots solve an optimal control problem sequentially to
obtain their trajectories.
Some works like [36]–[38] take a new approach and use
gaussian process to get multi-agent trajectories and motion
plans. Specifically, [36] and [37] use factor graph methods to
improve computation time.
The current literature on the use of learning methods for
intersection management includes [39]–[45]. These papers
consider only a first order kinematic model for the robots
and the learnt policy gives the position trajectories of the
robots. Works like [46]–[48] propose multi-agent learning
methods to approach the intersection management problem.
[38] proposes a learning based solution for optimizing robots’
trajectories under bounded deviations of other robots from
some nominal trajectories. Work [49] uses reinforcement
learning to form platoons of vehicles and makes them pass
through the intersection. In other multi-robot applications,
there are works like [50], [51] that learn path planning policies
for navigation through narrow passages or hallways. Other
works such as [52] present RL algorithms for general multi-
robot trajectory coordination for purely first order kinematic
robots. The core idea of our work has similarities to [53]–[56],
which use RL methods to improve the efficiency of solving
a parametrized combinatorial or mixed-integer optimization
problem, for which the parameters are revealed online.
One of the main applications of our work is collision free
warehouse automation. Prioritized/sequential planning seems
to be a popular approach since it is both scalable and gives
near-optimal solutions. Some works like [23], [57]–[60] as-
sume the knowledge of some priorities over agents negotiat-
ing a path conflict (at an intersection), while [61] uses first
come first serve policy for conflict resolution.

B. DRAWBACKS OF CURRENT LITERATURE AND
MOTIVATION
For computational scalability, several works decide the cross-
ing/planning sequence (scheduling) among the robots and
then get their trajectories by solving optimization problems
in that order (prioritized/sequential planning). Scheduling is
done using various techniques like auctions [32], job schedul-
ing mechanisms [21] or some heuristics [14], [24], [25], [33].
The problem with this approach is that scheduling is disso-
ciated from the trajectory generation and may lead to sub-
optimal trajectories. Moreover, optimal policy for scheduling
may be highly dependent on the type of intersection and other
settings. Our past work [18] has a similar solution framework
as in this paper. However, [18] contains nomethod or learning
algorithm for obtaining a policy for determining crossing
orders.
To the best of our knowledge, there are very few works

like [28], [29], [62] which make a systematic attempt at as-
signing priorities to the involved agents. Existing approaches
to find a good set of priorities include iterative search algo-
rithms [62] or solving an optimization problem [28], [29],
which themselves are time consuming.
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Although [39]–[41], [43], [44], [48] use RL to directly
generate trajectories of the robots, the approach inherently
cannot guarantee safety in a deterministic way. Further, these
works only consider first order kinematic models of the
robots, whereas we consider a double integrator model for
the robots. Our proposed approach is very similar in spirit
to [53]–[56], which use learning methods to solve combi-
natorial optimization problems. However, these papers are
for very different applications. Additionally, all these works
provide algorithms that learn policies for a single agent rather
than multiple agents.

Motivation
Scalability, provable safety and efficiency are very important
aspects for multi-robot systems like in autonomous ware-
houses since they directly affect the capital/operational cost.
In light of the drawbacks of the existing literature, it is impor-
tant to address all these three aspects in a combined manner.
In this work, we address scalability, provable safety and effi-
ciency together by proposing a way to combine learning and
optimization methods. In particular, we use the optimization
framework to ensure provable safety and use learning frame-
work to improve scalability, while ensuring near-optimality.

C. CONTRIBUTIONS
The following are the main contributions of this paper.

• We propose an algorithm for learning a policy for de-
termining the order in which the robots cross an iso-
lated intersection, given certain features of the traffic.
The algorithm learns a policy that is shared among all
the robots. We use this policy over a solution frame-
work that combines learning and online optimization for
unsignalized intersection management for a continual
stream of robot traffic. The framework we use does
sequential optimization of trajectories for each robot
using the trajectories of other robots ahead of it in the
sequence as constraints. This way we ensure scalability
and safety. The framework implicitly handles continual
stream of robot traffic. This framework does sequential
optimization of trajectories for each robot using the
trajectories of other robots ahead of it in the sequence as
constraints. This way we ensure scalability and safety.
The framework implicitly guarantees safety at all times,
both during training and deployment.

• Through extensive simulations, we establish that the pro-
posed framework solves the intersection management
problem in real-time and provides near-optimal solu-
tions. In general, the performance of the trained policies
is significantly superior compared to many heuristics
from the literature. For example, in some scenarios,
the learnt policies on average provide up to 150% im-
provement in terms of the considered objective function
and up to 60% improvement in terms of average time
to cross, when compared against the first come first
serve heuristic. Also, in many empirical simulations, the

trained RL policy outperforms all the compared heuris-
tics by 40% in terms of the objective function and by
20% in terms of average time to cross weighted by robot
priorities for a considerable range of arrival rates.

• We propose some adaptations to the underlying solution
framework to address real-world implementation chal-
lenges like tracking errors and delays associated with
communication and computation. The framework with
these adaptations is deployed on physical robots to estab-
lish the real-time implementability of the framework i.e.,
communication and computations delays in the deployed
framework are smaller than the spare-time available in
the framework.

II. UNSIGNALIZED INTERSECTION MANAGEMENT AND
PROBLEM SETUP

FIGURE 1: A schematic of an example intersection and the
region of interest (RoI) with 8 lanes.

In this section, we first present the unsignalized intersec-
tion management problem and discuss some challenges in
solving it in real-time. Then, we pose a problem of learning
computationally efficient and near-optimal policies that can
be utilized for safe intersection management in real-time. We
first describe the intersection geometry, robots and notation.
We consider an isolated region of interest (RoI), denoted

as R ⊂ R2, consisting of M number of fixed lanes. Let S(l)
for l ∈ {1, . . . ,M} be the set of points in RoIR that form the
l th lane. Without loss of generality, we assume that each lane
S(l), for all l ∈ {1, . . . ,M} is an open set. The intersection
in the RoIR is

I := {z ∈ R | z ∈ S(l1)∩S(l2), l1, l2 ∈ {1, . . . ,M}, l1 ̸= l2},

i.e., the set of all points in the RoI that belong to at least
two lanes. We assume that the intersection I is a connected
set and that each lane leads to, goes through and leaves the
intersection I only once.

Figure 1 shows one such example configuration, with the
intersection I in the center. For a lane l, we denote its length
of approach to the intersection as d(l).

Definitions of robot related variables and parameters
We assume that the robots travel only along the fixed lanes
inside the RoI, i.e., they do not change lanes. We denote the
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set of robots under consideration by V . We denote the length
of robot i ∈ V with Li. Further for a robot i ∈ V , we denote
its lane number, time of arrival into the RoI, time of entry
into and time of exit from the intersection by qi, tAi , tEi and
tXi , respectively. The time of arrival of a robot into the RoI
is unknown before its arrival. We use xi(t), vi(t) and ui(t) to
denote the longitudinal position (specifically, front end of the
robot), longitudinal velocity and longitudinal acceleration of
the robot, respectively, along its lane qi at time t ≥ 0. We use
ẋi(t) and v̇i(t) to denote the time derivative of xi(t) and vi(t)
evaluated at time t , respectively. On each lane, we set up the
coordinates such that for a robot i ∈ V we have, xi(tAi ) =
−d(qi) and xi(tEi ) = 0. To capture if two robots i, j ∈ V are
on lanes that intersect in the intersection area, we define a
variable c(i, j) as

c(i, j) =


0 if qi = qj

1 if qi ̸= qj and S(qi) ∩ S(qj) = ∅
−1 if qi ̸= qj and S(qi) ∩ S(qj) ̸= ∅,

(1)

where ∅ denotes the empty set. Hence, c(i, j) is equal to 0, 1
and −1 if and only if the robots i and j are on the same lane,
on different lanes that do not intersect and on different lanes
that intersect, respectively. See Table 1 for a comprehensive
list of important notations and their definitions used in this
paper.

Constraints
We assume that the robots follow the double integrator dy-
namics with longitudinal acceleration as their input, i.e.,

ẋi(t) = vi(t) , v̇i(t) = ui(t), ∀i ∈ V , t ≥ tAi , (2)

where, ẋi(t) and v̇i(t) are the time derivatives of position and
velocity of robot i at time t . ui(t) is the acceleration input to
the robot i at time t . tAi is the arrival time of robot i.
We assume that the robots’ velocities and accelerations are

bounded, i.e.,

vi(t) ∈ [0, v̄i] and ui(t) ∈ [u, ū], ∀i ∈ V , ∀t ≥ tAi (3)

where, u < 0, ū > 0 and v̄i > 0 ∀i ∈ V .
To avoid collisions inside the intersection between robots

on a pair of conflicting or incompatible lanes (pairs of lanes
which intersect), we impose the constraint

tEi ≥ tXj OR tEj ≥ tXi , ∀i, j ∈ V , if c(i, j) = −1, (4)

where, tEi and tXi are time of intersection entry and exit of
robot i ∈ V . Note that the constraint (4) is combinatorial.
Next, we formulate the rear-end safety constraint. In in-

tersection management literature it is common to enforce
that any two robots on a lane are separated by at least a
fixed distance. However, note that in situations like ware-
houses, there is always a chance of robot or communication
or coordination failure. Hence we propose a conservative
rear-end safety constraint, which ensures the existence at
all times, of a feasible input (acceleration) trajectory for a

robot to come to a stop, avoiding collision, irrespective of
the trajectory taken by the robot ahead. We formally describe
this idea in the following definition and Lemma 1, which
are adapted from [63]. Subsequently, we present the rear-end
safety constraint.

Definition 1. (Safe following distance [63]). The maximum
braking maneuver (MBM) of a robot is a control action that
sets its acceleration to u until the robot comes to a stop, and
its acceleration is set to 0 thereafter. For two robots i, j ∈ V
on the same lane with i following j, i.e., c(i, j) = 0 and tAi >
tAj , a quantity D(i, j, t) is a safe-following distance at time
t if xj(t) − xi(t) ≥ D(i, j, t) ≥ Lj and, if each of the two
robots were to perform the MBM, then they would be safely
separated, i.e. xj(̂t) − xi(̂t) ≥ Lj, ∀t̂ ∈ [t, t̄], where t̄ ≥ t is
the time when robot j comes to a complete stop. •

Lemma 1. (Minimum safe following distance [63]). Let i, j ∈
V be a pair of robots with i following j on the same lane, i.e.,
c(i, j) = 0 and tAi > tAj . Then, the continuous function

D(i, j, t) = Lj +max

{
0,
v2i (t)− v2j (t)
−2u

}
(5)

provides a safe-following distance at time t for the pair of
robots i and j. •

In light of this, we impose the rear-end safety constraints

xj(t)− xi(t) ≥ Lj +max

{
0,
v2i (t)− v2j (t)
−2u

}
,

∀t ≥ tAi , ∀i, j ∈ V , s.t. c(i, j) = 0 and tAi > tAj . (6)

CONTROL OBJECTIVE
Consider a set of robots V that arrive into the RoI at different
times during a time interval of interest. Since the robots arrive
at different into the RoI at different times, we also call V a
stream of robots. For the robots in V , we want to minimize
their cumulative time taken to cross the intersection weighted
by their priorities, i.e.,

min
{ui(.) : i∈V}

∑
i∈V

ri(tXi − tAi )

s.t. (2), (3), (6),∀t ∈ [tAi , tXi ], ∀i ∈ V , (4),
(7)

where ri > 0 is a weight indicating the priority of robot i. Note
that tXi , for any i ∈ V , depends on the decision variable ui(.),
which is the control input trajectory to robot i ∈ V . Hence,
Problem (7) is a variable horizon optimal control problem,
with each robot in V having a different time horizon. This
is particularly difficult to handle for a stream of robots that
arrive at different times. Hence, we formulate the following
proxy optimal control problem for intersection management
for a stream of robots V .

max
{ui(.) : i∈V}

∑
i∈V

ri

tAi +Th∫
tAi

vi(t)dt

s.t. (2), (3), (6),∀t ∈ [tAi , tAi + Th], (4).

(8)
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Notation Definition
RoI and intersection geometry related

R Region of interest (RoI)
M Number of lanes
S(l) Set of points in RoI,R, that form the l th lane
I Intersection
d(l) Length of approach of the l th lane

Robot related
qi Lane of robot i

xi(t), vi(t), ui(t) Position, velocity and acceleration (input), respectively, of robot i along its lane at time t
ẋi(t), v̇i(t) Time derivatives of position and velocity, respectively, of robot i along its lane at time t
tAi , tEi , t

X
i Times of entry into RoI, entry into intersection and exit from intersection, respectively, of robot i

v̄ Upper bound on robot velocities
u, ū Lower and upper bounds, respectively, on the (input) acceleration for the robots
c(i, j) Indicator variable to represent lane compatibility of robots i and j, see (1)

TABLE 1: Table of some important notations.

Here Th is a sufficiently long time horizon. We assume that
the arrival time, tAi , of a robot i ∈ V is random and is
unknown before its arrival. Notice that Problem (8) is a proxy
for Problem (7) and we use the formulation (8) as it has the
advantage of a fixed time horizon Th for each robot.

Remark 1. (Challenges in solving Problem (8) directly).
There are several challenges in solving Problem (8). They
mainly stem from the following factors.

(i) At any given time instant, the exact information about
the future arrival of robots is not available.

(ii) Constraint (4) is combinatorial, which makes Prob-
lem (8) a mixed integer program. A naive optimization
approach scales exponentially with the number of robots
and lanes. This is problematic because intersection man-
agement problem is both time and safety critical.

In order to counter these challenges, we use a data-driven
approach similar to the one in [18], wherein data obtained
through simulations was used to manually tune the policy.
In the current work, we propose algorithms that learn near-
optimal policies to Problem (8). •

INFORMAL PROBLEM STATEMENT

In this work, we seek to develop algorithms that learn near-
optimal policies for Problem (8). While we allow the learning
to be centralized, implementation of learnt policies should be
distributed, i.e., the policy for each robot should depend on
only the data that can be easily obtained using robot-to-robot
and robot-to-infrastructure communication. The proposed so-
lution should be applicable to a continual stream of robots
arriving randomly into the RoI. Note that any feasible solution
to Problem (8) implicitly guarantees safety.

III. SOLUTION FRAMEWORK TO ADDRESS RANDOM
ARRIVAL TIMES
In this section, we present an overall framework/algorithm
for solving the intersection management problem. The broad
solution framework is a modified version of the one in [18].
We recap the main aspects of this framework.
As the arrival times of robots are unknown beforehand

and coordination between robots requires planning for groups
of robots at a time, we split the trajectory of each robot
into two phases - provisional phase and coordination phase.
Provisional phase of a robot begins when it arrives at the RoI
and ends when its coordination phase begins. A coordination
phase algorithm runs every Tc seconds and assigns safe and
efficient trajectories for crossing the intersection to the robots
in their provisional phase.
Before we discuss the specifics of this framework, we

introduce some notation. For a robot i ∈ V , tCi ≥ tAi
represents the time at which its coordinated phase starts, and
hence tCi = kTc for some k ∈ {1, 2, ...}. We let V (k) := {i ∈
V : tAi < kTc} be the set of robots which entered the RoI
before kTc, Vs(k) := {i ∈ V (k) : tCi < kTc} be the robots that
entered coordinated phase before kTc, Vp(k) := V (k)\Vs(k),
i.e., the set of robots that need coordinated phase trajectories
at kTc.

A. PROVISIONAL PHASE
Consider a robot i ∈ Vp(k) (k ∈ N). To ensure that the robot
does not enter the intersection before it enters the coordinated
phase, we impose the constraint

vi(t) ≤
√
2uxi(t). (9)

We let the robot’s acceleration input for the provisional phase
trajectory in the time interval [max{tAi , (k − 1)Tc}, kTc] be
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an optimal solution of the following problem.

max
ui(.)

kTc∫
max{tAi ,(k−1)Tc}

vi(t)dt

s.t. (2), (3), (6), (9), ∀t ∈ [max{tAi , (k − 1)Tc}, kTc].

(10)

B. COORDINATED PHASE
At the time kTc, for each k ∈ N, some or all the robots in
Vp(k) are assigned their coordinated phase trajectories, which
they start executing immediately. Ideally, we would like the
coordinated phase control input trajectories for the robots in
Vp(k) to be an optimal solution of Problem (11), which we
call as the combined optimization problem.

max
{ui(.) : i∈Vp(k)}

∑
i∈Vp(k)

ri

kTc+Th∫
kTc

vi(t)dt

s.t. (2), (3), (6), ∀t ∈ [kTc, kTc + Th], (4).

(11)

Note that the robots in Vs(k) would also appear in the con-
straints of Problem (11). Intersection safety constraint in
Problem (11) is still combinatorial. Solving Problem (11)
inherently involves picking a feasible solution with highest
objective value among all the feasible crossing orders. As a
result, this formulation scales exponentially with the number
of robots and is not suitable for real-time implementation.
We illustrate this exponential scaling of computation times
through simulations in Figure 5.
Algorithm 1 presents the overall framework for coordinating

Algorithm 1: overall_algorithm
Inputs: Coordinated phase time period Tc.

1 k = 1, Vp(1) = ∅, Vs(1) = ∅
2 while True do
3 if robot enters RoI then
4 Run provisional_phase for robot
5 Add robot to Vp(k)
6 end
7 if time = kTc then
8 Compute coordinated_phase on Vp(k)
9 Set Vnc(k) as the set of robots among Vp(k)

for which trajectories computed for the
coordinated phase do not let them cross the
intersection

10 Set Vs(k + 1) = Vs(k) ∪ Vp(k) \ Vnc(k) and
Vp(k + 1) = ∅

11 for i ∈ Vnc(k) do
12 Run provisional_phase for i
13 Add i to Vp(k + 1)
14 end
15 Set k = k + 1
16 end
17 end

the stream of robots. It describes when provisional and co-
ordinated phases are run and on what robots. Algorithm 1
perpetually checks for new robots entering the RoI and as-
signs them provisional phase trajectories as and when they
arrive. Periodically, with period Tc, the algorithm computes
coordinated phase trajectories for all the robots in their provi-
sional phase. Among these robots, those that can cross the
intersection with the computed trajectory start executing it
and hence enter their coordinated phase. On the other hand,
the robots that cannot cross the intersection with the newly
computed trajectories, continue in provisional phase with
updated provisional phase trajectories, computed as per (10).

Remark 2. (Possibility of multiple provisional phases for
a robot). In busy intersections, there might be cases where
the solution to Problem (11) gives a trajectory for a robot
i ∈ Vp(k) such that the robot does not exit the intersec-
tion by kTc + Th. This can potentially cause infeasibility
of Problem (11) in subsequent coordinated phases. In order
to avoid such a situation, such affected robots (robot i and
its successors in the crossing order) go through the provi-
sional phase again for the interval [kTc, (k + 1)Tc). This is
the reason why the time horizon for robot i ∈ Vp(k) is
[max{tAi , (k−1)Tc}, kTc] in Problem (10).We emphasize the
difference between a robot going through coordinate phase
computation and going through coordinated phase itself (us-
ing the computed coordinated phase trajectories). Specifi-
cally, in Algorithm 1, the robots in Vp(k) are going through
coordinated phase computation and at the end of k th iteration
in Algorithm 1, only the robots in Vs(k + 1) \ Vs(k) start
their coordinated phase. Robots in Vnc(k) will go through a
provisional phase again. •

SEQUENTIAL OPTIMIZATION FOR COORDINATED PHASE

To address non-scalability of combined optimization for ob-
taining coordinated phase trajectories, we present a modified
version of sequential optimization from [18] in Algorithm 2.
The algorithm takes as input a set of quantities called prece-
dence indices (pi ∈ R, ∀i ∈ Vp(k)), which determine the
crossing order. Each robot in Vp(k) obtains its coordinated
phase trajectory sequentially, as per the crossing order, by
solving the optimization problem in (12).
In Algorithm 2, at the beginning of each iteration of the

while loop, VQ is the subset of robots in Vp(k) that do not
have a coordinated phase trajectory yet. In Step 3, F is the
set of robots in VQ that are nearest to the intersection in their
respective lanes. In Step 4, we obtain the robot i∗ in F with
the largest precedence index pi∗ , after breaking ties arbitrarily.
In Step 5, V i∗

s is the set of all robots that were assigned
a coordinated phase trajectory before the robot i∗. If u∗i (.),
computed in Step 6, enables the robot to cross the intersection
before kTc + Th, then the robot i∗ starts executing u∗i (.) as
its coordinated phase control trajectory, starting at tCi∗ = kTc.
Then, i∗ is removed from VQ and the loop continues. On the
other hand, if i∗ cannot cross the intersection with the control
trajectory ui∗(.) then we break out of the loop and i∗ and the
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Algorithm 2: sequential_optimization
Inputs: Vp(k), Vs(k), pi ∀i ∈ Vp(k)

1 VQ = Vp(k)
2 if |VQ| > 0 then
3 F ← {i ∈ VQ : xi ≥ xj, ∀j ∈ VQ s.t. qi = qj}
4 i∗ ← argmax

j∈F
{pj}

5 V i∗
s ← Vs(k) ∪ (Vp(k) \ VQ)

6 ui∗(.)← Solve (12) for robot i∗

7 if i∗ crosses the intersection by
time kTc + Th with ui∗(.), then

8 tCi∗ ← kTc
9 i∗ starts executing u∗i at t

C
i∗

10 Remove i∗ from VQ
11 Go back to line 2
12 end
13 end

rest of the robots in VQ go through another provisional phase,
as described in Remark 2.
In Step 6 of Algorithm 2, ui∗(.) is obtained by solving the
following optimization problem.

J∗i∗ = max
ui∗ (.)

kTc+Th∫
kTc

vi∗(t)dt

s.t. (2), (3), (6), ∀t ∈ [kTc, kTc + Th], with i = i∗,

and tEi∗ ≥ τi∗ ,

(12)

where τi∗ is the minimum wait time of i∗ ∈ Vp(k), given by,

τi∗ = max{tXm : m ∈ V i∗
s s.t. qi∗ and qm intersect}.

Remark 3. (Features of Algorithm 2). Algorithm 2 has sev-
eral good features, which help in achieving the design goals
of scalability and real-time implementation. In a variety of
simulations, we have consistently observed that the compu-
tation for Algorithm 2 scales linearly with the number of
robots. We illustrate this feature in Figure 5. Algorithm 2
is an efficient version of the DD-SWA algorithm proposed
in [18], as the precedence indices need not be recomputed
after the trajectory optimization for each robot. The solution
framework, including Algorithm 2, can be implemented in a
distributed manner. Reader may refer to relevant discussions
in [18]. •
The solution framework is recursively feasible under the

assumption that every robot enters the RoI satisfying con-
straints (3), (6) and (9). Theorem 1 formalizes the result
guaranteeing the safety of the system for all time. This result
is very similar to the one in [18].

Theorem 1. (System wide recursive safety [18]). If every
robot i ∈ V satisfies the rear-end safety constraint (6)
at the time of its arrival, tAi , and its initial velocity is

such that vi(tAi ) ≤ min(v̄i,
√

2uxi(tAi )), feasibility of prob-
lems (10), (11) and (12) is guaranteed. Consequently, safety

of all the robots is also guaranteed for all time under Algo-
rithm 1.

Proof. Recall that each robot i ∈ V is allowed to decelerate
i.e., ui < 0. Hence, due to the assumption that robot’s entry
velocity, vi(tAi ) is less than the allowed upper-bound and
satisfies the rear-end safety constraint (6), infeasibility cannot
occur due to the violation (6). Further, it is also assumed that
vi(tAi ) ≤

√
2uxi(tAi ), ensuring the existence of a feasible

control trajectory so that the robot comes to a stop before
entering the intersection, making Problem (10) feasible.
Notice that if Problem (10) is feasible, the trajectory of pro-

visional phase guarantees for robot i that when it goes through
the coordinated phase computations, say at tCi , the intersection
safety constraint (4) is satisfied at tCi . This inherently ensures
that tEi ≥ τi is feasible (recall τi is the minimum wait time for
i). This guarantees feasibility of problems (11) and (12).

For the solution framework to be complete, we still need
to specify how the precedence indices pi are to be chosen. In
the next section, we propose an algorithm for learning a policy
that gives out ‘‘near-optimal’’ precedence indices, given some
information about the traffic state.

IV. LEARNING A POLICY THAT GIVES NEAR-OPTIMAL
CROSSING ORDERS
Recall that at kTc, the beginning of the k th coordinated phase,
Vp(k) is the set of robots that need coordinated phase trajec-
tories and Vs(k) is the set of robots that are already executing
their coordinated phase trajectories. Notice that Algorithm 2
takes as input the precedence indices of the robots in Vp(k),
using which it sequentially optimizes the coordinated phase
trajectories of the robots. In this section, we are interested in
obtaining a policy that determines the precedence indices of
the robots in Vp(k), given the traffic state, so that Algorithm 2
provides optimal or at least near-optimal solutions to the
combined optimization problem (11) and more generally to
the original optimization problem (8).
In particular, we propose a centralized algorithm for learn-

ing a policy, which
(i) can be implemented online in real-time.
(ii) is shared, i.e., the same policy is used by all the robots.
(iii) is distributed, i.e., a policy to which the inputs are infor-

mation available to a robot locally or through communi-
cation with its neighbouring robots.

(iv) can be implemented on an arbitrary number of robots.
We denote the shared policy by the function g(.). For robot
i, the input to the policy is the feature vector, fi, that captures
the state of the traffic relevant to robot i. Then, the precedence
indices are

pi = g(fi), ∀i ∈ Vp(k). (13)

There may be different number of robots in Vp(k) for
different k ∈ N. However, given the dimensions of the RoI
and lengths of the robots we can determine Nr , an upper
bound on the number of robots that could ever be in Vp(k).
Then, we pad the set of robots in Vp(k) with Nr − |Vp(k)|
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number of pseudo robots so that the state and action space
dimensions remain constant for each k ∈ N. Pseudo robots
are virtual robots with features chosen such that they do not
affect the feasibility and optimality of the crossing order and
trajectories of the real robots. For e.g., the position of a pseudo
robots can be picked far away from entry to RoI.

A. MARKOV DECISION PROCESS FORMULATION
Let Ṽ (k) be the union of Vp(k) and the set of pseudo robots,
so that |Ṽ (k)| = Nr . Then, we consider the Markov decision
process (MDP)with the state, action, reward and the next state
at the k th iteration defined as follows.
(i) The state, s, is the vector formed by concatenated feature

vectors of all the robots in Ṽ (k).
(ii) The action, a, is the vector of precedence indices of all

the robots in Ṽ (k) (by extension, the crossing order).
(iii) The reward, R, is as given in (14).
(iv) The next state, s′, is the concatenated feature vectors of

the robots in Ṽ (k + 1).
The state space can be described as the set of all con-

catenated feature vectors (including those of an appropriate
number of pseudo robots). Similarly, the action space is the
set of all precedence index vectors of all the robots (including
pseudo robots), i.e., RNr .

Given a state at k th coordination phase computation, the
RL agent decides an action as precedence indices indicating
the crossing order. This is fed as an input to the sequential
optimization (Algorithm 2), which outputs coordinated phase
trajectories for the robots. These trajectories along with the
trajectories of the robots in their provisional phase during
[kTc, (k+1)Tc) determine the state s′ at the next, (k+1)th, co-
ordinated phase computation time. This way, the provisional
phase and the sequential optimization algorithms act as the
environment to the RL agent.

Remark 4. (Reward function). Consider the k th coordinated
phase. Given the action a (precedence indices), let

Vc(k) := {i ∈ Vp(k) : tCi = kTc}, Vnc(k) := Vp(k) \ Vc(k),

where tCi is the time at which robot i begins its coordinated
phase, according to Algorithm 2. Thus, Vc(k) is the set of
robots that begin their coordinated phase at kTc, while the
robots in Vnc(k) undergo another provisional phase. Then the
reward function is

R =
∑

i∈Vc(k)

ri
xi(tAi + Tr)− xi(tAi )

|Vp(k)|

−
∑

j∈Vnc(k)

r̄
(d(qj)− xj(kTc))2

|Vp(k)|
,

(14)

where Tr is a suitable time horizon for the computation of the
reward and r̄ = max

i∈V
ri is the maximum priority among all the

the considered robots. The first term is the weighted sum of
distances covered by the robots inVc(k) during a time interval
of length Tr since their arrival into RoI. As Algorithm 2 does
not provide a coordinated phase trajectory for the robots in

Vnc(k), for each robot in Vnc(k), we have a penalty term
proportional to the square of the distance covered by the
robot from its time of arrival up to kTc. This penalty helps
in learning a near-optimal precedence index policy (13). We
observed that penalizing all the robots with the equal weight
of r̄ (in contrast to weighing penalty terms by individual
priorities) leads to better policies. This may be due to the
reason that a low priority robot crossing quickly makes way
for a higher priority robot which will arrive in the future to
travel quickly. •

Multi-Agent Joint-Action DDPG (MAJA-DDPG)
We use a modified version of the centralized multi-agent
Deep Deterministic Policy Gradient (MA-DDPG [64]) algo-
rithm to learn the precedence index policy (13). In this frame-
work, the shared policy g(.) is encoded by an actor neural
network. In addition, there are neural networks encoding a
target actor, a critic network encoding the estimated action
value function Q(.) and a target critic network Q̂(.). Let θ, θ̂,
ϕ and ϕ̂ be the parameters of the actor, target actor, critic and
target critic networks, respectively. We store the (joint-state,
joint-action, reward and joint-next-state) tuples in the replay
buffer and use samples from this replay buffer to update
the central-critic and shared actor networks in each learning
iteration.
Suppose that (sm, am,Rm, s′m) is them

th sampled tuple out of
N samples. The critic is updated to minimize the loss function
E , given in (15). The actor is updated according to ‘‘gradient’’
ascent of the sampled gradient of estimated return J with
respect to actor parameters θ, as in (16).

E =
1

N

∑
m

(Rm + γQ̂(s′m, Ĝ(s
′
m))− Q(sm, am))2. (15)

∇θJ =
1

N

∑
m

∇aQ(s, a)|s=sm,a=G(sm)∇θG(s)|s=sm . (16)

Here G(s) and Ĝ(s) represent the joint action (concatenated
precedence indices of all robots in Vp(k)) and joint target
action of all the robots in Vp(k), respectively. Rest of the
updates for target networks are similar to what is followed
in the DDPG algorithm in [65].

Online and offline learning approaches
Algorithm 3 is the online approach to the proposed learn-
ing algorithm. We generate streams of robots using a pois-
son process for determining the arrival times of robots and
choosing their initial velocities randomly. All these robots
go through provisional and coordinated phases as described
in Section III, where Algorithm 2 is used for obtaining co-
ordinated phase trajectories. Since in Algorithm 2, we only
care about the relative order of the precedence indices, we
have a softmax layer (only during training) as the last layer in
the RL actor network and use these values as the precedence
indices of corresponding robots. We observed that having this
layer leads to quicker learning since it limits the possibility of
different actions leading to same crossing order. We add the
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corresponding state, action, reward and next state tuple to the
replay buffer and update the critic, actor and the target net-
works as described above. Note that because of the softmax
layer, the implementation of this algorithm cannot be done
in a truly distributed manner. We use a modified Ornstein-
Uhlenbeck process (with decaying variance in added Gaus-
sian noise) as the exploration noise. Algorithm 3 can be run in
an online loop continuously, gathering data and learning from
it. A schematic flow of Algorithm 3 is presented in Figure 2.

Algorithm 3: online_learning
Inputs: Vp(k), Vs(k), shared-policy g, replay-buffer

1 Ṽ (k)← Vp(k) ∪ pseudo robots
2 s← concatenated feature vectors of

robots in Ṽ (k)

3 P←
(
g(fj)

)j=|Ṽ |
j=1

4 a← softmax(P) + exploration_noise
5 sequential_optimization

(
Vp(k), Vs(k),

{aj : j ∈ Vp(k)}
)

6 Compute reward R according to (14)
7 s′ ← concatenated feature vectors of

robots in Ṽ (k + 1)
8 Add (s, a,R, s′) tuple to replay-buffer
9 Update g and Q as in [65] using (15)

and (16)
10 Update targets ĝ and Q̂ using a polyak

factor as in [65]
11 Return replay-buffer, g

FIGURE 2: A schematic of online learning algorithm to train
the shared policy.

Similar to DDPG and MADDPG, the proposed algorithm
can also be used for offline learning. Given a data-rich re-
play buffer, the mini-batches can be sampled from this re-
play buffer and the RL agent’s actor and critic networks

FIGURE 3: A schematic of the shared policy neural network.

FIGURE 4: A schematic of offline learning framework using
Collect-Merge-Learn (CML) approach.

can be updated iteratively. We propose an offline learning
approach which involves constructing multiple individual re-
play buffers, one for each average arrival rate of robots using
the steps as indicated in the online-approach and thenmerging
them to form a newmerged replay buffer. This merged replay
buffer is then used to train a common policy, which can
then be deployed for a range of average arrival rates. We
refer to this as the Collect-Merge-Learn (CML) approach.
A schematic of this approach is presented in the Figure 4.
In all our simulations and experimental results, we use the
shared policy kernel, g(.), represented by a very simple neural
network of the architecture whose schematic is presented in
Figure 3 (see Remark 7 for details).

Remark 5. (Differences between DDPG [65], MAD-
DPG [64] and MAJA-DDPG).While DDPG, MADDPG and
MAJA-DDPG are all centralized learning algorithms, DDPG
learns a policy for a single agent. BothMADDPG andMAJA-
DDPG learn a shared policy for multiple agents. The main
difference between MADDPG and our proposed MAJA-
DDPG is in the computation of the sampled gradient of J
in (16). MAJA-DDPG uses the gradient of the critic action
value function Q with respect to the shared actor parameters
θ through the joint action (concatenated actions of all the
agents), whereas MADDPG estimates the gradient of Q with
respect to the shared actor parameters θ through the action of
a randomly selected agent in the corresponding computation.
•
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Remark 6. (List of features of a robot).We consider the fol-
lowing quantities as features of a robot i ∈ Vp(k): its distance
from the entry to RoI (xi(kTc) − d(qi)), its current velocity
(vi(kTc)), its priority (ri), its lane identifier (qi), upper-bound
on its velocity (v̄i), upper-bound on acceleration (ū), time
since its arrival into RoI (kTc − tAi ), its estimated minimum
wait time

(
τ̄i = max{tXj : j ∈ Vs(k)}

)
, the number of robots

following on its lane, and the average distance between the
robots following it on its lane. As can be seen, most of these
features can be directly measured or computed by robot i,
whereas the others can be obtained by communicating with
neighbouring robots. •
Remark 7. (Structure of the shared policy).We use a neural
network to capture the shared policy, g(.), which gives the
precedence index pi of a robot i ∈ V . Figure 3 presents a
schematic of this neural network. The input to this network
is the features, fi of the robot i ∈ V , (fi ∈ R10 since we use
10 features for a robot as listed in Remark 6). This input is
processed through two hidden layers. The first hidden layer
has 4 units with ReLU activation and the other hidden layer
has 2 units with linear activation. A linear combination of the
outputs at the last hidden layer is taken as the output of the
policy (the precedence index). •
Remark 8. (Centralized and distributed implementations of
trained policy). Notice that once a policy is trained, it can
be implemented either in a centralized or distributed manner,
with the help of robot to infrastructure (R2I) and robot to
robot (R2R) communication. For centralized implementation,
a central intersection manager collects and maintains the up-
to-date information about the state of all the robots in the
ROI. The provisional phase for new robots and coordinated
phases for existing robots can be computed in a centralized
way (following Algorithm 2) and faithfully relayed to the
vehicles through the R2I communication. For a distributed
implementation, notice that all the features of a robot can be
constructed using local information and can be acquired by a
chain of R2R and R2I links. Also, the softmax activation in
computing precedence indices can be ignored. Moreover, tra-
jectories for a robot in the coordinated phase can also be com-
puted locally on that robot, after all the required information
for that robot-specific optimization problem being commu-
nicated using R2R and R2I communication. We assume that
all communications are instantaneous and error-free. Hence
discussions on required bandwidth, specific communication
protocols to be used etc. are outside the scope of this work. A
more detailed discussion of a distributed implementation can
also be found in [18]. •

V. SIMULATION RESULTS
In this section, we present simulations comparing the
proposed learning based sequential optimization algorithm
against combined optimization and some other policies from
literature.

The source code for the simulations is available at the link
https://github.com/Control-Network-Systems-Group-IISc/

IntMan-SeqOpt-Learn.

A. SIMULATION SETUP
Simulation parameters

We consider a warehouse scenario with 8 lanes meeting in
the intersection from 4 directions. Each lane has an approach
length of 7m, i.e., d(l) = 7m, ∀l ∈ {1, 2, ..., 8} in Figure 1.
Each lane is 0.7m wide, making the intersection a square of
side 2.8m. For each robot i, its length Li is 0.75m and upper
and lower bounds on its acceleration are 2m/s2 and−2m/s2,
respectively. The initial velocity of robot i is sampled from
a uniform distribution on [0, v̄i]. We carried out simulations
for streams of randomly arriving robots with various average
arrival rates. In particular, streams were generated by choos-
ing tentative arrival times of robots into the lanes according to
a poisson process, with a specified average arrival rate. The
actual arrival time of each robot is delayed till the rear-end-
safety condition (6) is satisfied. We set the coordinated phase
computation interval to 6s, i.e., Tc = 6s.

We say that a simulation has homogeneous traffic if all
the lanes have the same average arrival rate and hetero-
geneous traffic otherwise. If the (lane dependent) average
arrival rate remains same throughout the duration of sim-
ulation, we say that the simulation has static traffic and
time-varying otherwise. For the simulations having static
heterogeneous traffic we choose the average arrival rates on
different lanes to be 0.13, 0.18, 0.08, 0.15, 0.19, 0.09, 0.05
and 0.16 robots/lane/s on lanes 1, 2, 3, 4, 5, 6, 7 and 8 respec-
tively. We further differentiate how the average arrival rates
vary with time by saying that the simulation has random-
time-varying traffic or burst-mode-time-varying traffic. In
the case of random-time-varying traffic we choose to sam-
ple the average arrival rate on each lane uniformly from
{0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15}
every 100s. In case of burst-mode-time-varying traffic,
every 30s, we choose to set average arrival rate to be
0.15 robots/lane/s for the first 10s and 0.05 robots/lane/s for
the remaining 20s.

A simulation is said to have homogeneous parameters if all
the robots involved in the simulation share the same priority
and upper bound on velocity i.e., ri = 1 and v̄i = 1.5m/s
∀i ∈ V . On the other hand, the simulation is said to have
heterogeneous parameters if the priorities and velocity upper
bounds are different for different robots. Specifically, we
choose to set the robot priorities randomly by sampling from
the set {1, 2, 4, 5} with probability 0.5, 0.3, 0.15 and 0.05
respectively at the time of its entry into RoI. We choose to set
lane dependent velocity upper bounds where robots on lanes
1, 4, 5 and 8 have velocity upper bound as 1.5m/s and those
on lanes 2, 3, 6 and 7 have velocity upper bound as 1m/s.

Different simulation settings we use to study the perfor-
mance of the proposed approach is presented in Table 3.
Each cell that shows homogeneous and static traffic, also
shows the set of arrival rates in robots/lane/s for which the
corresponding training or testing simulations were done.
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CML training

For training the policies, we collect 10 individual replay
buffers (one for each average arrival rate for cases with train-
ing on homogeneous traffic setting and 10 of the same average
arrival rate setting for cases with training on heterogeneous
traffic setting), each containing data of 5000 coordinated
phases collected from random streams (evolving according
to Algorithm 3). These individual replay buffers are merged
to form a single merged replay buffer. This merged replay
buffer is then used to train, using the CML approach, a set
of 10 policies (with different network initializations). We use
a discount factor of 0.99 for all training simulations.

B. SUB-OPTIMALITY AND COMPUTATION TIMES OF
SEQUENTIAL OPTIMIZATION METHOD
In this subsection, we first demonstrate that, in general, se-
quential optimization can give near-optimal solutions. For
this, we compare the performance of combined optimization
against sequential optimization for all possible crossing or-
ders and choosing the one with the best crossing order by
exhaustive search, which we call as BESTSEQ. We also il-
lustrate that there is a tremendous computational advantage of
sequential optimization, with a CML policy determining the
precedence indices over combined optimization and BEST-
SEQ.

For these comparisons, we collected coordinated phase
problem instances (Vp(.) and Vs(.)) from 3 streams of 500s
each, with an average arrival rate of 0.08 robots/lane/s with
BESTSEQ (homogeneous, static traffic and heterogeneous
parameter setting with Th = 30s). For each coordinated
phase instance, we also computed the optimum solution using
combined optimization.

|Vp(.)| 1 2 3 4 5 6
No. of inst. 21 42 34 49 55 16

opt_gap
(%)

avg 0 0.74 1.19 1.44 2.04 2.05
90thp 0 2.07 2.86 2.90 3.69 3.29

TABLE 2: Sub-Optimality of BESTSEQ.

FIGURE 5: Computation time per-robot for combined opti-
mization, BESTSEQ and CML trained sequential optimiza-
tion.

For a given coordinated phase problem instance, let CCO
and CBS denote the objective values of Problem (11) obtained
using combined optimization and BESTSEQ respectively.
Since combined optimization is computationally expensive,
we consider only those coordinated phases with |Vp(.)| ≤ 6,
making a total of 217 coordinated phase instances. Table 2
presents the number of problem instances (No. of inst.), av-
erage (avg) and 90th percentile (90thp) of optimality gaps,

opt_gap :=
CCO − CBS

CCO
%

We see that, on average, the sub-optimality of BESTSEQ is
within an acceptable range (∼ 2%).
For the same set of problem instances, computation time

per robot for combined optimization, BESTSEQ and sequen-
tial optimization, with a CML trained policy, are compared
in Figure 5. In this figure, bold black lines represent the
mean, boxes represent the range of values between the first
and third quartile, the whiskers represent the 10th and 90th

percentile and red circles are outliers. We see that, with some
sub-optimality, BESTSEQ incurs far less computation times
compared to combined optimization. The computation time
per robot for sequential optimization, with a CML trained
policy, is essentially constant with the number of robots and
several orders of magnitude lower than that of BESTSEQ
and combined optimization - specially for higher number of
robots. Thus, our proposed framework is far more suitable for
real-time implementation.

C. COMPARISON OF CML TRAINED POLICIES AGAINST
OTHER POLICIES
Next, we compare the performance of CML trained policies
against some heuristics from literature. Since the computation
time for combined optimization is prohibitive except for very
low traffic arrival rates, we skip it from these comparisons.
Though BESTSEQ is not as computationally intensive as
combined optimization, it too is prohibitively costly and we
report data from BESTSEQ only for low traffic conditions.
Given its small optimality gap with respect to combined
optimization, it also serves as a reasonable benchmark where
its computation time is manageable.
In the overall solution framework described in Section III,

we compare the performance of several policies for deter-
mining the crossing order in sequential optimization, Algo-
rithm 2. We compare the policies generated by CML against
the following policies for various situations.
(i) BESTSEQ: Sequential optimization for the best crossing

order, which is determined with an exhaustive search.
(ii) CMLCEN: Sequential optimization with a central (not-

shared) RL policy deciding the precedence indices for
each involved robot as a function of features of all the
involved robots and pseudo-robots.

(iii) FCFS [9], [16]: First come first serve. Complete trajec-
tory for a robot, say i ∈ V , to cross the intersection is
obtained as and when it enters the RoI (at tAi ) consider-
ing Vp(.) = {i} and Vs(.) = {j : j ∈ V ∧ tAj < tAi }.
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Training Testing
Traffic Param. Th (s) Tr (s) Traffic Param. Th (s)

Sim-1
Hm., Static

{0.01, 0.02, ..., 0.1} Ht.
30 20

Hm., Static
{0.01, 0.02, ..., 0.1} Ht.

30

Sim-2
Hm., Static

{0.11, 0.12, ..., 0.2}
60 30

Hm., Static
{0.11, 0.12, ..., 0.2}

60

Sim-3
Hm., Static

{0.01, 0.02, ..., 0.1} Hm.
30 20

Hm., Static
{0.01, 0.02, ..., 0.1} Hm.

30

Sim-4
Hm., Static

{0.11, 0.12, ..., 0.2}
60 30

Hm., Static
{0.11, 0.12, ..., 0.2}

60

Sim-5 Ht., Static Ht. 60 30 Ht., Static Ht. 60

Sim-6
Hm., Static

{0.11, 0.12, ..., 0.2}
Ht. 60 30

Hm., Static
{0.01, 0.02, ..., 0.1}

Ht.

30

Sim-7
Hm., Static

{0.125, 0.175,
0.21, 0.22, ..., 0.3}

60

Sim-8
Hm.,

burst-mode
time-varying

30

Sim-9
Ht.,

random
time-varying

TABLE 3: Traffic parameters and other parameters used in different simulations. Acronyms: Hm. - Homogeneous, Ht. -
Heterogeneous, Param. - Parameters. Note: For Sim-1 to Sim-5, we train separate CML policies for each simulation. But for
testing Sim-6 to Sim-9 we use the policies trained in Sim-2.

(iv) TTR (Time to react) [24]: Sequential optimization with
negative of the ratio of distance to intersection and cur-
rent velocity of a robot as its precedence index.

(v) PDT [33]: Sequential optimization with negative of
product of distance to intersection and time-to-react of
a robot as its precedence index.

(vi) CDT [25]: Sequential optimization with a convex com-
bination of distance to intersection and time-to-react of
a robot as its precedence index, with the convex combi-
nation parameter 0.5.

(vii) OCP [28]: Sequential optimization with order in ‘vir-
tual’ intersection entry and exit times deciding the cross-
ing order. As suggested in [28], these ‘virtual’ intersec-
tion entry and exit times are computed by solving the
combined optimization problem (11) at that coordinated
phase neglecting the intersection safety constraints (4).
Then the steps 1 to 5 proposed in Section III(a) of [28]
are followed to decide the crossing order.

We compare the performance of the proposed CML (shared
policy) approach against the above mentioned policies for
various traffic and parameter settings, for e.g., homogeneous
traffic (Sim-1 through Sim-4) and heterogeneous traffic (Sim-
5). For Sim-1 through Sim-5, we train different policies for
each simulation.We also compare the performance of policies

trained on some set of average arrival rates against heuristics
on a test set of different average arrival rates (Sim-6 and Sim-
7) and time varying average arrival rates (Sim-8 and Sim-9)
unseen during training. For testing in Sim-6 to Sim-9, we use
the policies trained in Sim-2. These serve as a test for learnt
policy generalization. Table 3 presents a comprehensive list
of training and testing traffic and other parameters used in
different simulations.

We compare the different policies in the following way.We
run each of the heuristic policies on 100 randomly generated
streams each of 300s long, for each average arrival rate. For
the learnt policies from CML approach, we run each of the
10 trained policies on 10 randomly generated streams (hence
100 random streams), for each average arrival rate in the
simulation (refer to Table 3). We remove the data of first 90s
in each stream to neglect transient traffic behaviour and com-
pute the average (over 100 streams) of the control objective
values (value of the objective function of Problem (8) with the
first Th seconds of a robot’s trajectory data) from generated
streams. We call this the average performance of policy p,
denoted by J̄p, for a given arrival rate. We then compare the
average performance of the learnt CML policy against some
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policy p using the quantity

E(p) :=
J̄CML − J̄p

J̄p
% (17)

for each average arrival rate in the test cases.
We also compare the learnt policies against the heuristics

using weighted average (over all robots over 100 streams)
of time to cross (TTC) the intersection since their entry into
RoI. For this, say for a given random stream, Ĵp represents the
weighted average of the TTC (TTC of each robot weighted by
its priority value). Then we compare the learnt CML policy
against some policy p using the quantity

B(p) :=
ĴCML − Ĵp

Ĵp
% (18)

for each average arrival rate in the test cases. Both E(p)
and B(p) averaged over multiple random streams specify
how suboptimal the policy p is compared to the learnt CML
policy in terms of distance covered and time taken to cross
respectively.

Figures 6 through 11 compare the performance of different
heuristics against the policies learnt using CML after 100000
learning iterations under different traffic and parameter con-
figurations. The common legend for Figures 6, 7 and 8 is in
Figure 9.

Figures 6 and 7 compare the performance of CML policies
over other policies, in homogeneous traffic setting. We see
that CML policy, in general, outperforms all the heuristics by
a goodmargin both in terms of average performance (in terms
of E(.) and B(.)) and average TTC over a large range of aver-
age arrival rates. Note that average TTC is an inverse measure
of average intersection throughput (low TTC implies high
intersection throughput). We also note that the central CML
(CMLCEN) policy performs poorly compared to the shared
CML policy. This may be due to increase in the number of
parameters to be learnt in a central policy and possibly more
local minima which come along with it. Since BESTSEQ is
computationally expensive, we present comparisons of CML
and other heuristics against BESTSEQ only for the set-up in
Sim-1 (Figures 6a and 7a), that too for arrival rates 0.01 to
0.05 robots/lane/s. Beyond this arrival rate, the computation
time for BESTSEQ is prohibitively large. For very low arrival
rates (0.01 to 0.04 robots/lane/s), we notice that the heuristics
do better than CML trained policies. This may be because a
CML policy generalizes for better performance over a large
range of average arrival rates.

In Figure 8 (results related to Sim-6 and Sim-7), we see that
the policies trained on homogeneous traffic setting on a range
of average arrival rates {0.11, 0.12, ..., 0.2} outperform other
heuristics in test traffic generated using other average arrival
rates too. Figures 10a and 11a present comparisons between
different policies in heterogeneous traffic setting (Sim-5). In
Sim-5, the CML policy outperforms other heuristics by a
large margin. This may be due to the bad performance of
heuristics in such settings. We see similar results when the
same trained policies are tested on time varying traffics –

homogeneous burst-mode traffic (Sim-8) presented in Fig-
ures 10b and 11b and heterogeneous random traffic (Sim-9)
presented in Figures 10c and 11c. Figures 8, 10b, 10c, 11b
and 11c also demonstrate that the learnt CML policies gener-
alize well to traffic situations unseen during training.
In Figure 12, we compare the computation times required

for getting the crossing order (precedence indices) for various
policies/heuristics collected over a random stream of 500s,
with average arrival rate for all lanes set to 0.2 robots/lane/s
with heterogeneous parameters. Note that computing prece-
dence indices is the only part of the framework where
the computation efforts differ for various policies/heuristics,
since sequential optimization follows precedence index com-
putations for all heuristics. In Figure 12, we see that heuristics
TTR, PDT and CDT take the least time (less than 20µs),
the CML policy takes close to 3ms on average and the OCP
heuristic takes up to 250ms on average. This can be attributed
to the fact that for TTR, PDT and CDT, computations are
just algebraic operations. For CML, a neural network needs
to be evaluated. However, for OCP, a non-linear optimization
problem needs to be solved to get the precedence indices.
Similarly, in Figure 13 we compare the average time taken

per robot to solve the provisional and coordinated phase
optimization problems for various policies. We run this com-
parison on 10 (same) random streams on each of the heuris-
tics for Sim-1 and Sim-2 settings. Notice that for CML and
other heuristic policies except FCFS, a robot may go through
provisional phase multiple times. Due to this, FCFS incurrs
far less computation time compared to the heuristics for all
arrival rates. For lower arrival rates, CML seems to take the
same amount of time as other heuristics, which changes as
the arrival rates increase. This may be due to the CML policy
allowing for better platooning by making some low priority
robots go through more provisional phases compared to other
heuristics.

VI. ADAPTATIONS FOR IMPLEMENTATION
For practical implementation of the algorithm, we need to ad-
dress the issues arising from the simplifying assumptions on
tracking errors, communication delays and computation times
made during the formulation in Section II. In the following,
we describe how we have relaxed these assumptions to make
the framework fit for practical implementation.

We limit the scope of this paper by assuming that a low
level trajectory tracking controller is available on each robot
which tracks the given reference trajectory faithfully with
bounded errors. We also assume that the per-robot commu-
nication delay and computation times are bounded.

Handling tracking errors
Suppose that the bound on position tracking errors is b units.
The tracking errors are handled by considering L̂j = Lj + 2b
as the length of robot j ∈ V for all computations in the algo-
rithm. Notice that this affects both rear-end and intersection
safety constraints.
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(a) (b) (c) (d)

FIGURE 6: Percentage improvement in average performance of CML trained policies over that of different heuristics (E(.),
see (17)) averaged over 100 random streams for various heuristics and average arrival rates (Figures (a), (b), (c) and (d) for
Sim-1, Sim-2, Sim-3 and Sim-4 respectively). Dashed black line is 0%. See Figure 9 for legend.

(a) (b) (c) (d)

FIGURE 7: Percentage reduction in weighted average of TTC for CML when compared with various heuristics (B(.), see (18)
and Average time to cross (TTC) for different policies/heuristics averaged over 100 random streams (Figures (a), (b), (c) and
(d) for Sim-1, Sim-2, Sim-3 and Sim-4 respectively). See Figure 9 for legend.

(a) (b) (c) (d)

FIGURE 8: Percentage improvement in average performance of CML trained policies (average E(.), see (17)) over that of
various heuristics averaged over 100 random streamns ((a) for Sim-6 and (c) for Sim-7). Comparison of weighted average time
to cross (TTC) against CML for various heuristics (average B(.), see (18)) ((b) for Sim-6 and (d) for Sim-7). See Figure 9 for
legend.

FIGURE 9: Legend for Figures 6, 7, 8, 17a and 17b.

Handling communication and computation delays

Suppose that the bound on communication delay is δ units,
bounds on computation time per robot are ∆p units and

∆c units for provisional phase and coordinated phase, re-
spectively. Computation time and communication delays are
handled by pre-computing the trajectories. That is if a robot
i is about to enter the RoI at time tAi , we estimate its ve-
locity of entry and initiate its provisional phase trajectory
computations at time tAi −∆p − δ. Similarly, we initiate the
computations for k th coordinated phase at kTc−Np∆c−δ for
the robots in Vp at that time, where Np is an appropriate upper
bound on the number of robots in Vp. The computations are
made assuming perfect prediction of positions and velocities
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(a) (b) (c)

FIGURE 10: Percentage improvement in average performance of CML trained policies over that of different heuristics (E(.),
see (17)) averaged over 100 random streams for various heuristics and average arrival rates (Figures (a), (b) and (c) for Sim-5,
Sim-8 and Sim-9 respectively).

(a) (b) (c)

FIGURE 11: Comparison of weighted average time to cross (TTC) against CML for various heuristics (average B(.), see (18))
(Figures (a), (b) and (c) for Sim-5, Sim-8 and Sim-9 respectively).

FIGURE 12: Comparison of computation times required to
get precedence indices (crossing order) for different poli-
cies/heuristics.

of robots at kTc.
If the communication delays are small enough, the errors

due to such delays can be merged with tracking errors by
adding the maximum possible distance a robot i ∈ V can
cover during the communication delay period which is v̄iδ. In
this case, trajectory pre-computation times may not involve
the communication delay term δ. Since the communication
delays are small in our experiments, we follow this method.

Note that the policy is trained offline in an ideal scenario
without these adaptations. These adaptations to the algorithm
are made only during implementation.

(a) (b)

FIGURE 13: Average computation time per robot taken to
solve provisional and coordinated phase optimization prob-
lems for various average arrival rates. Figures (a) and (b) are
with simulation parameters corresponding to Sim-1 and Sim-
2 respectively. See Figure 9 for legend.

A. SIMULATION STUDY ON EFFECT OF ADAPTATIONS
Since we train the policies in an ideal scenario and the adap-
tations are incorporated in the implementation, it is natural
to expect some degradation in the performance of the policy
in the adapted framework setting. In this regard we compare
the performance with and without adaptations for setting in
Sim-1 and Sim-2.
Recall that delays due to communication and computation

times are handled by pre-computations. Notice that, evenwith
pre-computations, the coordinated phase occurs periodically
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(a) (b)

FIGURE 14: Percentage reduction in throughput (number
of robots crossed per unit time) for various average arrival
rates and various values of buffer b when compared against
b = 0. Figures (a) and (b) are with simulation parameters
corresponding to Sim-1 and Sim-2 respectively. L denotes the
length of a robot.

in the adapted framework with the same period as the ideal
framework. Hence, we choose to ignore the computation
and communication delays in the following numerical study.
Instead, we model any error in prediction of robot state for
pre-computations as tracking error.

As noted earlier, tracking errors are addressed by adding
buffer 2b units to the length of the robot in the constraints. In
Figure 14 we study the effect of tracking errors on the average
throughput (number of robots crossed per unit time averaged
over 10 policies and 10 simulations per policy) by comparing
the ideal scenario (b = 0) against various values of b for Sim-
1 and Sim-2. In all these simulations, we use the CMLpolicies
trained on the ideal scenario with b = 0. In order to reduce the
randomness in the comparisons, we fix the number of robots
and the lower bound on their arrival time for all simulations.
The actual stream may be different for different values of b
due to the effect of the buffer value. In Figure 14, we observe
that the average throughput consistently reduceswith increase
in the buffer value. Also, it is interesting to note that for small
buffer values, the reduction in throughput is reasonably small.

VII. IMPLEMENTATION IN A LAB SETTING
We implemented the proposed algorithm on a collection of
line following robots, specifically 3pi+ 32U4 Turtle edition
robots manufactured by Pololu Robotics and Electronics [66].
Due to the lack of significant computational and communica-
tional capabilities on these robots, we run the algorithm on
a computer, store the computed trajectories and use XBee
S6B WiFi modules to communicate the trajectories to the
robots at each time-step. We use OptiTrack motion capture
system [67] to track these robots. We use a 4-way intersection
layout as in Figure 15 printed on a flex-sheet. The black lines
represent the lanes for the robots. The robots follow the lines
to cross the intersection and loop around on the perimeter
square and re-enter the RoI on a randomly chosen lane. This
process continues repeatedly so that we have a continual robot
streams.

FIGURE 15: A schematic of the layout used for implemen-
tation on robots. The black lines represent the paths for the
robots to follow. The union of red and blue shaded regions
is the RoI and the blue shaded region is the intersection. The
robots flow in the direction of the arrows depicted along with
lane numbers. a = 0.8m and c = 0.53m

A. PARAMETERS FOR EXPERIMENTS
The approach length for each lane in the RoI, d(l) = 0.8m
(depicted as a in Figure 15) ∀l ∈ {1, 2, 3, 4} and the width
of the intersection in 0.53m (depicted as c in Figure 15).
The length of each robot is 0.1m. The bound on inherent
tracking errors and tracking errors due to communication
delay was measured to be, b = 0.075m. To allow for better
trajectory tracking performance, we set v̄i = 0.25m/s ∀i ∈ V ,
even though the robots are capable of speeds up to 0.4m/s.
Given these bounds, we chose L̂j = 0.15m for buffer to
address communication delays and tracking errors. We set
Tc = 3s and Th = 20s. We measured ∆p = 0.1s and
∆c = 0.2s after repeated experiments. We use a PID position
tracking controller for low-level trajectory tracking, which
faithfully tracks the trajectory with bounded error. Figure 16
shows a picture of the actual lab setup where we ran these
experiments.

FIGURE 16: Setup for hardware implementation in our lab.
The bottom-left picture is a close-up of a robot used, the
top-left picture is one of the cameras of OptiTrack motion
capture system. The picture on the right depicts an ongoing
experiment.

B. INDICATIVE RESULTS FROM EXPERIMENTS
We deployed a policy that was learnt offline in ideal sim-
ulations (without tracking errors, communication and com-
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putation delays and restricting parameters only to the RoI)
using CML approach. We trained a set of 10 policies each
with different network parameter initialization on the set of
average arrival rates {0.11, 0.12, ..., 0.2} robots/lane/s. We
tested these 10 learnt policies in ideal simulation environ-
ment and chose the policy with the highest sum of average
objective function value over the average arrival rates in the
set {0.01, 0.02, ..., 0.2} robots/lane/s, over 10 test simulations
for each average arrival rate and compare its performance
against the heuristics. The plots indicating the results of these
simulations is presented in Figures 17a and 17b. We observe
that, for the parameters considered in the experiments, the
CML policies start to outperform the other heuristics only
after an average arrival rate of 0.1 robots/lane/s.

However, due to the limitations imposed in our lab setting
(e.g., number of robots, approach length for each lane, veloc-
ity bounds on the robots etc.), it is hard to achieve such high
average arrival rates consistently. For this reason, we choose
to present some indicative experimental results for snapshots
(sets Vp and Vs).
In this regard, we consider the following 3 different robot

initializations on the outer ring (part of the path outside the
RoI in Figure 15):
(i) 2 robots to enter each lane.
(ii) 3 robots to enter two conflicting lanes and 1 robot each

to enter the other two lanes.
(iii) 2 robots to enter two conflicting lanes, 3 robots to enter

one of the other and 1 robot to enter the other.
The performance of the learnt policy is compared in the

real-world set-up with the algorithmic adaptations proposed
in the previous subsections against other heuristics by com-
paring the time to cross values such that each of the involved
robots got through coordinated phase exactly once. The value
of Tc = 5s is chosen so that more robots participate in a
coordinated phase. Note that the FCFS heuristic has an undue
advantage in such a comparison since the trajectories are
computed for a robot as and when it enters the RoI and does
not have to wait till the next coordinated phase. Hence, to be
fair for the heuristics, here we propose to compare with an
alternate heuristic which we callC-FIFO, where the robots go
through provisional phase and the crossing order (and hence
the order in coordinated phase) follows the first-in first-out
rule.

We conduct 3 runs for each initialization for each policy
(each run with same initial position of the robots) and present
the average TTC obtained for different policies in Figure 17c.

In Figure 17c we observe that the CML policy produces
lowTTCvalues compared to other heuristics.We also observe
that most of the TTC values for CML policy lie in a small
region (e.g. range of values inside the box i.e., which fall
within 1st and 3rd quartile) compared to other heuristics, thus
promoting fairness in TTC among the involved robots in
various scenarios. This is indicative of the performance of the
CML policy deployed under real-time constraints.

As mentioned earlier, due to restrictions imposed in the
lab-setting, we do not present results from our experiments

with longer continual streams of robots. A short video of our
lab implementation with continual streams negotiating the
intersection safely can be seen using the link https://youtu.
be/Io4DxmpJPaI. This stands as a proof of concept for real-
time implementability of the methods proposed in this work.
We leave the larger scale implementation for future work.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper, we have combined learning with optimization
methods to obtain a near-optimal solution for multi-robot
unsignalized intersection management, which can be imple-
mented in real-time. The proposed solution gives a policy that
is shared by all the robots and can be deployed in a distributed
manner. With extensive simulations, we have established that
such a policy outperforms the major heuristics proposed in
the literature, over a range of average traffic arrival rates. We
also illustrate the vast improvement in computation time of
the proposed solution compared to that of naive optimization
methods for the intersection management problem. We have
also proposed some adaptations to the solution framework to
address real-world challenges like tracking errors, commu-
nication and computation delays and have implemented the
learnt policies on robots in a lab setting with the proposed
adaptations. The proposed method is flexible so that, with
fresh training, policies for different kinds of intersections can
be learnt. As already seen, such a training will need some
basic information about the new intersection setting and no
expert knowledge is necessary (as in the case of some heuris-
tics and analytical methods). One future research direction is
to use transfer learning methods to reduce training time when
a policy learnt for one intersection setting is to be adapted to
another setting. It is also interesting to see if a single policy
can be learnt to work for a set of intersections and robots
with different parameters like lane and RoI dimensions, robot
velocity and acceleration limits etc. Other future directions
include implementation fine-tuning, extensions to allow lane
changes, to handle disturbances, dynamic obstacles and for a
network of intersections.
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