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Abstract— In this work, we consider the problem of optimally
routing a single agent on a graph for persistent surveillance
and reporting under energy constraints. We aim to minimize
a combination of weighted graph idleness, based on node
priorities, and the time elapsed since the agent’s last report.
This requires repeatedly solving ‘similar’ computationally chal-
lenging optimization problems. To this end, we adopt a rolling
horizon approach and use a deep Q-network (D3QN) based
algorithm to learn policies that, given the graph state and the
agent’s location, decide the agent’s next node to visit, while
guaranteeing the satisfaction of energy constraints. Through
exhaustive simulations and comparisons against an integer
programming (IP) solver, we demonstrate near-optimality of
our approach. Our method also provides several orders of
magnitude reduction in computation time over the IP solver.
We also compare our approach with five other frameworks,
namely, Q learning based Black Box Learning Agent (BBLA),
Entropy Maximized Patrolling (EMP), Travelling salesman
problem (TSP) heuristic, Concurrent Bayesian Learning Strat-
egy (CBLS), a graph attention (GAT) based learning method.

I. INTRODUCTION

Surveillance by mobile agents is critical in areas of public
safety, border security, search and rescue operations etc.
We model such a problem as one of optimal routing on a
graph under energy constraints. Typically, such problems are
computationally challenging and not scalable. In this paper,
we propose a reinforcement learning (RL) based scalable and
near-optimal approach to solve this problem.

Related work: Persistent surveillance/patrolling problem
has been studied for several decades and a recent survey [1]
describes the regular and adversarial surveillance/patrolling
problems in the literature. Among the several approaches
to the surveillance problem in the literature, a popular
one is that of optimization-based routing on graphs. Some
prominent examples of this approach for single or multi-
robot surveillance include [2]–[6]. Much of this literature is
in the context of centralized computation though. A recent
work [7] describes a distributed algorithm for communication
constrained and coordinated multi-robot path planning. For
persistent surveillance, a common approach is to use a
rolling horizon planning or model predictive control as in [8].
Works like [9] take travelling salesman problem (TSP) based
approach to persistent surveillance.

A major drawback of optimization based routing for
surveillance is that it often tends to be a combinatorial
problem with very poor computational scalability. Hence,
in recent years, several research groups are exploring the
use of learning-based approaches to surveillance problems.
Work [10] proposes an RL-based patrolling problem with
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the aim of minimizing average inter-visit times to different
nodes. Works like [11], [12] explore a Bayesian Learning
approach whereas [13] proposes an LSTM-based multi-agent
patrolling algorithm. Works like [14] and [15] use graph
attention and CommNet. While most of these works focus
on just persistenBBLAt ‘surveillance’, there is a recent body
of work which also introduces the notion of reporting the
collected information. Works like [16]–[20] have discussed
the notion of base nodes/stations where an agent has to regu-
larly visit/connect to upload the collected information. These
works provide sub-optimal heuristic solutions since naive
optimization methods scale badly in terms of computation.

Literature gap and Contributions: Existing literature in
optimal graph surveillance either propose (i) optimization-
based methods like [8], which are computationally inefficient
and not scalable, (ii) heuristic solutions [9], [16], [17] are
specific to a certain set of scenarios and it is not directly clear
how to adapt the methods for other scenarios, (iii) learning-
based methods which are computationally efficient but
present comparisons against some existing heuristics [10],
[12], [14] or do not work with general graphs with zero
surveillance priority nodes [21] and without any provision
for reporting. Further, the possibility of dynamic nature of
some problem parameters, for eg. time varying survey node
priorities, are not considered.

The following are the contributions of this work.
(i) We propose an RL aided rolling horizon framework,

with attention based novel Q-network architecture, for
single-agent persistent surveillance and reporting on a
graph with dynamic node surveillance priorities, with
guaranteed energy constraint satisfaction.

(ii) The framework allows for time varying (possibly
stochastic) node priorities, indicating their relative im-
portance in the overall surveillance and reporting task.
Due to good generalizability and low inference times
of RL based policies, it is possible for our approach to
adapt quickly and re-plan near-optimal solutions when
the surveillance parameters change.

Through extensive simulations, we demonstrate that the
proposed framework provides near-optimal solutions with
great computational efficiency. We train and test on a set of
randomly generated graphs with various number of nodes
and topologies. We also demonstrate that our proposed
method performs significantly better compared five other
algorithms, namely, Q learning based Black Box Learn-
ing Agent (BBLA) [10], TSP based heuristic [9], Entropy
Maximized Patrolling (EMP) [21], CBLS [12] and GAT
based learning [14]. This strongly indicates that the proposed
method is generalizable to graphs of various sizes and
topologies.

Notation: We denote the sets of all real numbers, non-
negative real numbers, integers and non-negative integers
by R, R≥0, Z and N0, respectively. For a, b ∈ R, we let



[a, b]Z := [a, b] ∩ Z and [a, b)Z := [a, b) ∩ Z. A weighted
directed graph is an ordered tuple (V,E,W ), where V is the
set of nodes, E ⊆ {(i, j) | i, j ∈ V } is the set of directed
edges between the nodes and W = {w(i, j) ∈ N0|(i, j) ∈
E} is a set of weights associated with the edges. We denote
the set of out-neighbors of node i along with node i as
N̄ (i) := {j ∈ V |(i, j) ∈ E} ∪ {i}. By Ω(i, V̄ ), we denote
the cost along the least cost path among all paths going from
node i ∈ V to some node j ∈ V̄ ⊂ V , where the edge costs
are the weights W . We denote a function f : Rn → Rm

parametrized by θ ∈ Rl, evaluated at b ∈ Rn as f(b; θ). We
represent the uniform distribution on a set S as U(S).

II. PROBLEM SET-UP

We consider the problem of persistent surveillance and
reporting on a strongly connected directed graph G =
(V,E,W ) by a single agent, in a discrete-time framework.
The node set V modelling the set of places to be visited,
consists of two kinds of nodes, namely, survey nodes and
base nodes. The set of survey nodes, denoted by Vs, models
the set of places to be surveyed and the set of base nodes,
denoted by Vb, models the places where the agent has to
occasionally report the survey data. Edge (i, j) ∈ E models
a direct route from node i ∈ V to node j ∈ V and the weight
w(i, j) ∈ W models the travel time along the associated
edge (i, j). Since we consider a discrete-time model with
t ∈ N0 as the discrete time variable, we also let the travel
times w(i, j) ∈ N0 for each (i, j) ∈ E. Unless mentioned
otherwise, we assume the graph has a self-loop at each node
i ∈ V , i.e., (i, i) ∈ E, and we let w(i, i) = 1 for all i ∈ V .

We model the surveillance and reporting problem as one of
routing an agent on the graph. The sequence of actions of the
agent is the sequence of nodes it visits. In other words, the
agent takes an action only when it is at a node and not when
it is on an edge between two nodes. Hence, we keep track
of (tm)m∈N0

, the sequence of time steps when the agent is
at a node. In particular, tm is the mth time step at which the
agent is at a node in V . In the sequel, for brevity, we refer to
the overall surveillance and reporting task (problem) as the
surveillance task (problem), unless mentioned otherwise.

We associate a priority pi(t) ∈ R≥0 to each node i ∈ V at
each time-step t ∈ N. Priority models the nodes’ importance
at time t in the overall surveillance task. In the current work,
the priority of a base node is zero for all time, i.e., pj(t) =
0, ∀j ∈ Vb, ∀t ∈ N0. Priorities are user-defined, possibly
random quantities and are useful for incorporating exogenous
information into the surveillance problem or to make the
routing pattern of the agent time-varying and difficult to
predict by an adversary. For example, the priorities may be
determined based on historical data on events of interest or
topography of the regions that are abstracted as the nodes
in the graph. In this work, we do not assume any particular
model or pattern in how the priorities change, except that
they change somewhat slowly and that the priorities pi(t) of
all nodes are known only at and after time step t.

For this reason, we pose the persistent surveillance prob-
lem as a rolling horizon optimal control problem in order to
adapt and re-plan for possible changes in priorities as well
as for computational tractability. In particular, we solve a
fixed horizon optimal control problem with planning horizon
length T > 0 at each time step in the sequence (tm)m∈N0

and
at tm, the agent takes the first action in the plan computed

at tm and discards the rest. Thus, to keep the exposition
simple, we mainly describe a single instance of the finite
horizon problem, wherein the priorities are assumed to be
constant for the considered horizon.

We denote the location of the agent at a time step t ∈
[0, T ]Z in the planning horizon by l(t). Thus,

l(t) = i, if agent is at node i ∈ V at time t (1a)
l(t) /∈ V, if the agent is on an edge at time t. (1b)

In the plan computed at tm, the agent takes the action a(m) ∈
N̄ (l(tm)), which is the set of neighbors of the node l(tm)
(including l(tm) itself) and the agent would reach the node
a(m) at time tm + w(l(tm), a(m)). That is,

a(m) ∈ N̄ (l(tm)) (2a)
tm+1 = tm + w(l(tm), a(m)) (2b)

l(tm+1) = a(m). (2c)

We assume that the agent has a finite energy capacity ē ∈
N0. The agent fully recharges its energy whenever it visits
a base node. Whenever the agent is not in a base node, it
consumes one unit of energy per time step. Thus, the energy
of the agent evolves as:

e(t) =

{
ē, if l(t) ∈ Vb

e(t− 1)− 1, otherwise.
(3)

For persistent surveillance, the agent must maintain its en-
ergy e(t) above a threshold to perform continuous surveil-
lance without interruption. Thus, we impose the constraint
e(t) ≥ 0, for all t ∈ N0.

To each node i ∈ V , we associate a state variable called
demand, di(t) ∈ R, which is the time since the agent’s last
visit to node i. Thus the demand, at each node i ∈ V and
for all t ∈ N0, evolves as

di(t) =

{
0, if l(t) = i

di(t− 1) + 1, otherwise.
(4)

Similarly, the time since last base node visit for the agent,
denoted by g(t), evolves as

g(t) =

{
0, if l(t) ∈ Vb

g(t− 1) + 1, otherwise.
(5)

We now formally define the fixed horizon optimization
problem for surveillance in (6). Without loss of generality,
we assume that the initial time for the optimization problem
is t = 0 and that the agent starts at a node, i.e., l(0) = b for
some b ∈ V . d̂i ∈ N0 denotes the demand of node i ∈ V
at t = 0 with d̂b = 0, ĝ ∈ N0 denotes the time since last
visit to a base node by the agent at t = 0 with ĝ = 0
if b ∈ Vb, and ê ∈ N0 denotes the initial energy of the
agent with ê = ē if b ∈ Vb. Since we assume that the node
priorities pi(t), ∀i ∈ V and ∀t ∈ N0, change very slowly
compared to the planning time horizon T , in Problem (6),
we let pi = pi(0) for all i ∈ V to be constants. Notice that
Problem (6) is combinatorial in nature.

min
{a(m)∈V }m∈N0

t=T∑
t=1

(∑
i∈V

pidi(t) + g(t)

)
(6a)

s.t. (1), (2), (3), (4), (5),∀i ∈ V, e(t) ≥ 0 ∀t ∈ [1, T ]Z (6b)

l(0) = b, g(0) = ĝ, e(0) = ê, di(0) = d̂i ∀i ∈ V. (6c)



Problem statement: Given a graph G = (V,E,W ),
we aim to develop an optimal persistent surveillance and
reporting strategy for G using a rolling horizon framework.
This requires repeatedly solving “structurally” similar but
varying instances of Problem (6), with different parameters,

D := {{pi, d̂i}i∈V , b, ĝ, ê}.

This poses serious computational challenges. Thus, we de-
velop an RL based method to obtain policies that provide
near-optimal solutions to instances of Problem (6), given
the parameters D as inputs, for a broad set of possible
parameters. Since we want to solve such problem instances
repeatedly, we also want the method to be computationally
efficient for online plan generation.

III. RL FRAMEWORK
In this section, we propose an RL based framework for

learning policies that give solutions to arbitrary instances
of Problem (6), for a variety of parameters D. We first
introduce the state space (S), action space (A), state tran-
sition dynamics, and the reward function for the underlying
Markov decision process (MDP). Recall that, it is sufficient
to define the state, actions, and rewards only at time steps
(tm){m∈N0|tm≤T} when the agent visits a node and chooses
the action of which node to visit next.

Consider an arbitrary instance of Problem 6. At a time-step
tm in the planning horizon, we define the state as

s(m) :=

((
pi, di(tm), xi(tm),

(
yi(j)

)
j∈Vb

,Wi

)
i∈V

,

g(tm), e(tm), T − tm

)
,

where yi(j) is the travel-time along an arbitrarily pre-
determined path with the least number of hops from the node
i ∈ V \ Vb to the base node j ∈ Vb, yj(j) = 0 ∀j ∈ Vb and
Wi is the ith row of the weighted adjacency matrix of the
graph G with the diagonal elements replaced by −1. xi(tm)
is the travel-time along an arbitrarily pre-determined path
with the least number of hops from the node l(tm) to node
i ∈ V . We call the set of all such feasible states s(m), as
the state space S.

Given a state s(m), we define the action, a(m), as the
agent’s next node to visit. Note that due to graph connectivity
constraints, a(m) ∈ N̄ (l(tm)). Also, given the energy
constraints, the next node the agent visits should be chosen
such that the agent can still visit a base node for a recharge
before it depletes all its energy. Hence, the admissible set of
actions at state s(m) is the following.

As(m) :=
{
v ∈ N̄ (l(tm)) |Ω(v, Vb) ≤ e(tm)− w (l(tm), v)

}
We let the reward associated with the state-action pair

(s(m), a(m)) at time step tm in the planning horizon be

r(m) := −
min{tm+1,T}∑

τ=tm+1

(∑
i∈V

pidi(τ) + g(τ)

)
.

Notice that the reward r(m) is the negative of the sum of
priority-weighted demands at all nodes and the time since
last visit to a base node by the agent over all time instants
from tm+1 to min{tm+1, T}. Also, notice that the rewards

over an episode sum up to negative of the very cost function
that we want to minimize in (6a).

A. Duelling double deep Q-network
To learn a policy that gives the agent’s actions, we intend

to learn a function Q(s, a), which approximates the state-
action value function of the state s and action a. For this, we
use Double Duelling Deep Q-Learning (D3QN) algorithm,
similar to the one used in [22]. In this regard, we use a neural
network, denoted henceforth as the Q-Network, for function
approximation. We use the standard experience-replay based
DQN-like algorithm which maintains policy and target Q-
networks for Q-value estimation. Due to space constraints,
we do not present the complete pseudo-code of this standard
algorithm. Specifically, the D3QN algorithm is a combination
of Double DQN [23] and Duelling DQN [24], and it is
designed to avoid inaccurate Q-value estimation.

Q-Network architecture and Q-value estimate computation
for D3QN: We denote our Q-Network as function Q :
S × A → R. Note that the dimension of the state s(m)
grows with the number of nodes in V and it may be fairly
large even for not so big graphs. This would require a large
neural network with many parameters if Q(., .) is represented
by a fully connected network. To avoid this, we construct
our Q-network out of the following four building blocks, a
schematic of which is presented in Figure 1.

(i) A bidirectional gated recurrent unit (BGRU), G(.; θG)
(ii) A Bahdanau Attention block [25], B(.; θB)

(iii) A fully connected state-value block, X (.; θX )
(iv) A custom advantage-value kernel, P(., .; θP).

The BGRU block G(.; θG) has a hidden state dimension
of 128. The state-value block X (.; θX ) consists of four
fully connected hidden layers with 256, 512, 256 and 64
units respectively. The first and third hidden layers have
rectified linear (ReLu) activation and the remaining layers
have linear activation. The advantage kernel P is modelled
by a neural network described by the equation P(x; θP) =
Y3((1−Y1x) tanh(Y2x)), where, x is the concatenated input
and θP = (Yi)

i=3
i=1 are learnable parameters, 1 is the vector

of ones with appropriate dimensions.
At t = tm, the input to the BGRU is constructed from

s(m), as the sequence of features ŝ
(
s(m)

)
of the nodes.

ŝ
(
s(m)

)
= (pi,di(tm), xi(tm), g(tm),(

yi(j)
)
j∈Vb

,Wi, T − tm)i∈V

The difference between s(m) and ŝ
(
s(m)

)
is that in the

latter we do not include e(tm) and we include g(tm) and
T − tm as many times as the number of nodes in V . The
BGRU block outputs a sequence (hi(s(m)))i∈V and the last
entry in this sequence, h|V |(s(m)). That is, G

(
ŝ
(
s(m)

)
) =(

(hi(s(m)))i∈V , h|V |(s(m))
)
.

h|V |(s(m)) is fed as the query and sequence
(hi(s(m)))i∈V is fed as the keys to the attention block
B(.) which outputs a context vector c(s(m)). That is,
c(s(m)) = B

(
(hi(s(m)))i∈V , h|V |(s(m))

)
. The context

c(s(m)) is fed to the state-value block, X (.; θX ), and its
output is treated as the value estimate for state s(m).

Suppose that we are evaluating the value of the action
j ∈ As(m), then we pass the context vector c(s(m)) and
hj(s(m)) (the jth entry in the output sequence of G(.))
through the advantage kernel P(., .; θP). The output of the



Fig. 1: Schematic of the neural network architecture used for Q value estimation. Notice that the advantage kernel P(., .)
uses the same parameters θP for all state-action pairs.

kernel P(c(s(m)), hj(s(m))) is treated as the advantage
value for action j when the environment is in state s(m).

Finally, the state-action value, Q(s, a), for a state s and
candidate action a ∈ As pair is estimated as Q(s, a) =
X (c(s)) + P(c(s), ha(s)) − 1

|As|
∑

a′∈As
P(c(s), ha′(s)).

Once trained, the policy that the agent uses is to sample
an action from U(argmaxa Q(s, a)) when the state is s.

IV. SIMULATIONS
In this section, we present some simulations, comparisons

and their results demonstrating the near-optimality, and com-
putation time benefits of our approach. We also compare our
approach with a greedy heuristic, Q learning based Black
Box Learning Agent (BBLA [10]), travelling salesman prob-
lem based approach (TSP [9]), Entropy Maximized Patrolling
(EMP [21]), the CBLS algorithm [12] and a graph attention
based learning algorithm (GAT [14]). We first describe the
various graphs we use, then describe the training, testing and
comparison simulations. Finally, we discuss the simulation
results.

Most of the simulations we present were carried out on a
set of 15 strongly connected random directed graphs, G1,
with various number of nodes and topologies. These are
generated by removing edges randomly from random Watts-
Stogartz graphs. G1 includes 3 graphs each with 10, 15, 20,
25 and 100 nodes. Base nodes for each graph are selected
randomly (see Table I) and the travel time for each edge
is sampled uniformly from [1, 3]Z. For convenience, say
Gn := {G : G ∈ G1 and G has n nodes}.

In the RHP framework, we also compare the D3QN poli-
cies against the CBLS algorithm [12] and a graph attention
based learning algorithm (GAT) [14] on a grid graph (25
nodes) and an irregular graph (34 nodes) shown in Figures
3(b) (grid) and 3(c) (irregular) in [14]. Let G2 be the set of
these grid and irregular graphs.

A. Training, testing and comparisons
1) D3QN Training: We separately train 5 D3QN policies

for each graph. Training process involves running a PyTorch
implementation of D3QN algorithm. At the start of training
a policy for a given graph, we sample the parameters D
of Problem (6) (more details in specific simulations given
below). At each time step, given the state, we use an
ϵ−greedy exploration policy to get the action. The action

is taken and the next state and reward are observed. The
(state, action, reward, next state) tuple is stored in the replay
buffer, replacing the oldest tuple if the replay memory is
full. At each learning iteration, we sample 16 tuples from the
replay buffer and update the weights of the policy and target
Q-networks according to the standard D3QN algorithm. At
the end of the horizon of an instance, the parameters of
Problem (6) are sampled again. The exploration probability,
ϵ, decays exponentially from 0.5 to 10−4 along learning
iterations. The learning rate starts at a value of 0.0005 and is
scheduled to decrease by a factor of 0.75 after every 2×104

learning iterations. We set the replay buffer size to 5× 104.
We run one learning iteration per time step.

2) Sim-1 – D3QN evaluation on arbitrary instances of
Problem (6): Here, we use the graphs in G1. For graphs in
G1 \ G100 and G100, we set the horizon length to be T =
15 and T = 30, respectively. We empirically compare the
computation times and relative percentage difference of cost
between D3QN and SCIP. We also compare the performance
of D3QN against the greedy heuristic, wherein the agent
always moves to an admissible neighbor node that would
have the highest product of priority and demand at the next
time step if the agent were to take no action.

An instance is generated by randomly selecting high prior-
ity nodes (HPNs), low priority nodes (LPNs), their priorities,
initial demands (see Table I), and the initial agent location.
Priorities of HPNs and LPNs are respectively sampled from
U([5, 7]Z) and U([1, 2]Z). Initial demands of HPNs and LPNs
are respectively sampled from U([10, 20)Z) and U([1, 4]Z).
The initial agent position is sampled uniformly from the
set of nodes V . The initial energy and time since last base
node visit are sampled from U([em, ē]Z) and U([em, 3T ]Z)
respectively, where, em is the least energy required to travel

No. of
nodes

No. of
HPNs

No. of
LPNs

Average No.
of neighbours

No. of
base nodes

10 3 7 5 1
15 3 12 7 2
20 3 17 5 3
25 5 20 7 3

100 25 75 4 10

TABLE I: Number of high priority nodes (HPNs), low priority
nodes (LPNs), base nodes and average number of neighbors in
random graphs with varied number of nodes.



from the initial position to a base node and ē is the maximum
energy capacity of the agent. We train the 5 D3QN polices for
each graph as mentioned in Section IV-A.1. We run 2.25×
105 learning iterations (equivalently 1.5 × 104 instances)
for graphs in G1 \ G100 and 5.5 × 105 learning iterations
(equivalently 3× 104 instances) for graphs in G100.

For comparisons, we generate and use the same 50 test
instances of each graph in G1. We run greedy heuristic and
corresponding trained RL policies on the same test instances.
We also solve an integer program (IP) corresponding to
each of these test instances using the SCIP solver in Python
supported by PySCIPOpt. Due to computational limitations,
we limit the solution time of the solver to 10800s and we
use the best solution obtained by then. Let JIP (i), JRL(i),
JGP (i), JBBLA(i) and JTSP (i) represent the cost obtained
by solving the test instance i using SCIP, D3QN, greedy
heuristic, BBLA and TSP-heuristic respectively. We compute
βH(i) := JH−JIP

JIP
% for policy H (eg. RL, IP, TSP etc.), and

use these values to judge the performance of a policy. We
record 150 values each for SCIP, BBLA, TSP and greedy
heuristic (3 graphs with 50 values each) and 750 values for
D3QN (3 graphs with 50 values each on 5 trained policies),
over all graphs with same number of nodes.

3) Sim-2 – Rolling horizon comparisons (D3QN vs SCIP):
Here, we only use the graphs in G25. We generate 5 RHP
test instances for each graph, as explained in Sim-1, but with
demands of all nodes set to 0. For each RHP test instance,
the priorities change randomly. The sequence of time steps
on which the priorities change is given by (zi)i∈N0 where,
zi+1 = zi + κi, z0 = 0 and κi ∼ U([1, 10]Z). At these time
steps, only the HPNs and LPNs are sampled and the priorities
are assigned randomly like a new instance in Sim-1.

Here, we re-plan for the next planning horizon after
implementing the first decision of the previous horizon. We
set planning time horizon, T = 15 and the simulation time to
150 time steps. We run the 5 trained D3QN polices (trained
on corresponding graphs from Sim-1) and SCIP on each of
these RHP test instances. For each instance i, we compute the
cost (6a) with D3QN (ĴRL(i, τ)) and with SCIP (ĴIP (i, τ))
with changing priorities over various values of RHP horizon
τ ≤ 150. Say, GRHP (i, τ) =

ĴRL(i,tau)−ĴIP (i,tau)

ĴIP (i,tau)
% for an

RHP test instance i for some RHP horizon length τ . We use
GRHP (i, τ) values to compare the performance of a policy
in the RHP framework. Here for each value of τ , we will
have 25 values of GRHP (., τ).

4) Sim-3 – Comparison with EMP [21], CBLS [12] and
GAT [14]: Here, we only use the graphs in G2. A test

instance refers to a graph with all node demands initialized
to 0, node priorities set to 1 and the agent initiated randomly.
There are no base nodes, no energy constraints and the
priorities do not change. Hence we generate 25 and 34 test
instances for grid and irregular graphs, respectively (each
instance with the agent in a distinct node). We use the
RHP framework with re-planning after implementing the first
decision with the planning horizon, T = 15 time steps and
the simulation time as 150 time steps.

For D3QN, we freshly train 5 policies on the grid and
irregular graphs separately, as given in Section IV-A.1. While
training, in each instance, the demands are sampled randomly
from U[1, 4]Z for all nodes with a horizon length of T = 15
time steps. We train each policy for 2.25 × 105 learning
iterations (equivalent to 1.5× 104 instances).

For CBLS and GAT we use the code available in the link
https://github.com/glx15534565855/MARL to solve patrol
and for EMP, we use the code available at
https://github.com/kevinkang1125/EM-Patroller. CBLS
uses the policy in [12]. For GAT and EMP, we set the
number of agents to 1 and use the policy trained with
default settings in the code. We compare the cost values,
as in Sim-2, with RHP over 150 time steps on 25 and
34 instances of each of the grid and irregular graphs
respectively. We run 10 simulations for each instance with
EMP’s stochastic policy. Also, we run EMP simulations
only on grid graph, since it needs the travel times between
all neighbors to be equal. For each problem instance, we
consider average objective value over 5 policies for D3QN
and 10 simulations for EMP. For grid graph, this gives 25
values each for D3QN, EMP, CBLS and GAT. For irregular
graph, we have 34 values each for D3QN, CBLS and GAT.
B. Results

Now, we present our simulation results.
1) Sim-1: In Figure 2a, we present the evolution of µβ

(average relative percentage gap between D3QN and SCIP)
with training iterations for various graphs. We observe that
D3QN’s performance improves with the training iterations.
Table II summarizes the average and standard deviation val-
ues at the end of training, showing the method’s robustness
to network initialization. The table also presents the same
for BBLA and TSP-heuristic. As expected, BBLA and TSP
perform poorly (comparable to or worse than greedy policy)
due to missing information on the node priorities and time
since last visit to base node. The proposed method also
outperforms the greedy heuristic. Note the lower average
relative percentage difference 100 node graphs compared to

(a) D3QN training curves (b) Computation time comparison (c) Variation in µRHP with horizon (d) Comparison with CBLS and GAT

Fig. 2: Figures 2a and 2b present results for Sim-1, Figure 2c presents results for Sim-2 and 2d presents results for Sim-3. For Figures 2a
and 2c, the thick line indicates the average, while the shaded region denotes one standard deviation from the average. For Figures 2b
and 2d, black line represents the average, box represents the range of values between first and third quartile, whiskers represent range of
values between 90th and 10th percentile. Red circles are outliers.

https://github.com/glx15534565855/MARL_to_solve_patrol
https://github.com/kevinkang1125/EM-Patroller


Nodes D3QN (%) Greedy (%) BBLA (%) TSP (%)
µβ σβ µβ σβ µβ σβ µβ σβ

10 2.4 4.8 26.8 20.8 29.9 22 58.2 4.3
15 2.9 3.7 30.7 18.2 37.5 26.9 37 8.2
20 3.6 4.8 18.6 12.6 14.7 14.3 55.4 5.2
25 4.7 4.8 19.3 10.8 23.2 16.8 58.9 5.5

100 1.7 2.1 6.8 3.4 6.1 2.6 89.3 2

TABLE II: Results from Sim-1. µβ and σβ are average and
standard deviation in relative %-gap between fully trained policy
with D3QN, greedy policy, BBLA and TSP vs. SCIP.

others is due to a combination of computation time limit
on the SCIP solver and larger SCIP objective values for
100 node graphs. Figure 2b compares computation time per
episode for SCIP solver and D3QN on a i7-8700 processor
machine with 40GB of RAM. D3QN provides up to 4 orders
of magnitude benefit in computation time over SCIP. The
average and variance in computation times per episode for
the SCIP solver increases with the number of nodes in
the graph. Also, due to increase in the number of network
parameters, we observe an increase in D3QN computation
time for 100 node graphs. Note that the training time per
policy is roughly 6.5 hours for 1.5× 104 learning iterations
on the same machine.

2) Sim-2: Figure 2c presents the effect of the fixed
horizon planning on the long term cost. As the simula-
tion time increases, the performance of the D3QN policies
degrades, though the rate of degradation reduces with the
simulation time. We observe that the maximum (over D3QN
policies) optimality gaps for the three graphs (from Sim-1)
are 4.5%, 6.9% and 4.6%. However, the maximum rate of
increase of average gap in RHP framework are 0.29%, 0.51%
and 0.32% in order. This suggests that the rate of accumula-
tion of errors over the RHP simulation time is less compared
to errors in individual planning horizons. The average relative
percentage gap after 150 time steps for the 3 graphs are
15.57, 21.75 and 7.91 respectively.

3) Sim-3: Figure 2d compares the cost for RHP test
instances of Sim-3 with D3QN, CBLS and GAT on the
grid and irregular graphs. We observe that D3QN performs
significantly better compared to CBLS and GAT.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a rolling horizon based RL
framework for single-agent persistent surveillance and re-
porting with energy constraints. We compared the same
against SCIP solver and other state of the art surveillance
algorithms called BBLA, TSP-heuristic, EMP, CBLS and
GAT. We observed that the method performs comparably
to the SCIP solver and provides several orders of mag-
nitude reduction in the computation time. The proposed
also provides a significant improvement over CBLS and
GAT algorithms. Future directions include improving the
long term performance in rolling horizon framework, and
extension to multi-agent surveillance.
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