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Abstract— In this paper we propose a continuous-time non-
linear model of opinion dynamics. One of the main novelties
of our model is that it costs resources for an agent to express
an opinion. Each agent receives a utility based on the complete
opinion profile of all agents. Each agent seeks to maximize its
own utility function by suitably revising its opinion and the
proposed dynamics arises from all agents simultaneously doing
this. For the proposed model, we show ultimate boundedness
of opinions. We also show stability of equilibrium points
and convergence to an equilibrium point when all agents
are non-contrarian. We give conditions for the existence of
a consensus equilibrium and analyze the role that resources
play in determining the social power of the agents in terms of
the deviation of the consensus value from the agents’ internal
preference. We also carry out a Nash equilibrium analysis of
the underlying game and show that when all agents are non-
contrarian, the set of equilibria of the opinion dynamics is the
same as the set of Nash equilibria for the underlying game. We
illustrate our results using simulations.

Index Terms— Opinion dynamics, Multi-agent systems, Util-
ity maximization.

I. INTRODUCTION

Opinion dynamics in social groups or networks is an
important research topic with applications in diverse areas
such as sociology, economics, public health, transportation
and other engineering disciplines. For this reason, a diverse
set of communities has studied opinion dynamics for several
decades. The controls community has also made significant
contributions to this field in recent years.

Literature Review: Some of the first models of opinion
dynamics for finitely many agents are the French-DeGroot
model [1], [2] and the Abelson model [3], which are es-
sentially consensus dynamics. Taylor’s model [4] and the
Friedkin-Johnsen model [5] extend the consensus dynamics
models to include stubborn or prejudiced agents to explain
the opinion cleavage phenomenon. In all these models, the
topology of the social network remains constant. In contrast,
in the Hegselmann-Krause(HK) model [6], at each time
instant, each agent is influenced by only those agents whose
opinions are within a confidence bound of its own opinion.
The Altafini model [7] captures antagonistic relationships
among the agents by considering signed graphs. Gossip-
based models consider the case of asynchronous interactions
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among the agents. The Deffuant-Weisbuch (DW) model [8]
is a gossip-based counterpart of the HK model, where not
all agents exchange their opinions simultaneously, and only
a random choice of agents interact at each time step. These
are some of the fundamental models which serve as a base
for further extensions in the literature. Readers can find a
detailed summary of the models mentioned above and other
recent contributions in [9]–[11].

The concept of social power was first introduced for the
French-DeGroot model. The DeGroot-Friedkin (DF) model,
first proposed in [12], captures a combination of two pro-
cesses: the process of opinion formation and the process of
social power evolution. A generalized DF model has been
proposed in [13] and a modified version of the DF model,
considering stubborn agents, was proposed in [14].

A game-theoretic or utility maximization approach for
modeling opinion dynamics is still in a nascent stage, with
only a few works appearing so far. An opinion dynamics
model with stubborn agents in which each agent minimizes a
cost function using the best response dynamics was proposed
in [15]. A recent work [16] considers a dynamic influence
maximization game in which multiple competing parties
called players try to allocate their fixed resources over a
set of individuals (who hold opinions about each player) to
maximize their utility in the long term. A game theoretical
analysis of the asynchronous HK model was carried out in
[17]. A model which captures the effect of co-evolution of
opinions formed and actions taken by the agents was pro-
posed in [18]. Here the agents aim to coordinate their actions
(depending on their own opinion) with the actions of others
using best response dynamics, and agents try to maximize
their payoffs. A continuous time non-linear opinion dynamics
model, proposed in [19], was used for tuning the mutual
cooperative behavior of the agents in a repeated game, where
the agents rely on rationality and reciprocity to take strategic
decisions. A discrete-time opinion dynamics model, with
a game theoretic structure, in which every agent incurs a
cost for forming an opinion (the cost function consists of
a conformity cost and a manipulation cost) was proposed in
[20]. Here the goal of every agent is to hold an opinion which
minimizes this cost. In this model, opinions converge to
the unique Nash equilibrium. An expressed-private-opinion
model was proposed in [21], in which every agent’s private
opinion is influenced by its neighbors’ opinions but under
the pressure of conforming with everyone else, the agent
expresses an opinion different from its private opinion. The
model that we have proposed in this paper also considers
expressed opinion and internal preference opinion for an



agent, but in our case, the preference of an agent is static, and
every agent wants to have its opinion close to its preference.

Contributions: Unlike most of the literature on opinion
dynamics, we start with utility functions for each agent that
depend on the collective opinion profile. The utility function
of each agent includes a resource penalty for expressing an
opinion of large magnitude. The proposed opinion dynamics
is then each agent ascending along the gradient of its utility
function while assuming other agents do not revise their
opinions. The resulting continuous time opinion dynamics
model is non-linear due to the resource penalty. Without the
resource penalty term, the proposed dynamics is similar to
the Taylor’s model [4]. Such a penalty is unique to our model
and is motivated by the fact that expressing an opinion or
influencing others with an opinion requires resources such
as wealth, time, social influence or combinations of them.

For the proposed model, we show ultimate boundedness of
opinions. For non-contrarian agents, we analyze the stability
of the equilibrium points and show convergence of opinions
to an equilibrium. We provide a necessary and sufficient
condition for the existence of consensus equilibrium for the
dynamics. In case of convergence to a consensus equilibrium,
we also analyze the deviation of the consensus value from
each agent’s internal preference and relate it to the hetero-
geneous resources of the agents. We further carry out game-
theoretic analysis of our model. For non-contrarian agents,
we show that the set of equilibria of the dynamics is the
same as the set of Nash equilibria of the underlying game.
Compared to the game theoretic formulations of opinion
dynamics [15]–[20], our primary contribution is the resource
penalty in the utility functions and analysis of the effects of
heterogeneity in the resources available to each agent.

Organization of the paper: The rest of the paper is
organized as follows, Section II formally introduces the
utility function and the opinion dynamics model. Section
III contains the analysis of the long-term behavior of the
proposed dynamics, such as ultimate boundedness of the
opinions, stability of equilibria and convergence of opinions
for non-contrarian agents. Section IV contains the analysis
of the consensus equilibrium in our model. In this section,
we also give results connecting the equilibria of the dynamics
and the Nash equilibria of the underlying game. In Section
V, we demonstrate our results using simulations. Concluding
remarks appear in Section VI.

Notation: Throughout the paper, we use non-bold letters
for denoting scalars, bold lowercase letters for denoting
vectors, and bold uppercase letters for denoting matrices. The
sets of real numbers, non-negative real numbers and positive
real numbers are denoted by R, R≥0 and R>0, respectively.
Let 1 ∈ Rn denote a vector with all elements equal to one.
For a set S, Sn denotes the Cartesian product of S with itself
n times. The null set is denoted by ∅. For a function of time
f(t), D+f(t) represents the upper-right-hand derivative, i.e.,
D+f(t) = lim suph→0+

f(t+h)−f(t)
h .

II. MODELING AND PROBLEM STATEMENT

Consider a set A := {1, . . . , n} of n agents. We seek to
model and study the dynamics of opinions expressed by the
agents on a single topic. We start with a utility function for
each agent and obtain the proposed opinion dynamics model,
assuming that each agent myopically seeks to maximize its
utility function. For each agent, the utility function depends
on its preferred opinion, the influence of other agents and
resource penalty. Thus, the coupling in the utility functions
creates the coupling in the opinion dynamics of the agents.

Opinions, Utility Function and its Parameters: We denote
the expressed opinion of agent i at time t on the topic with
zi(t) ∈ R. For brevity, we skip the time argument wherever
there is no confusion. The vector z := [z1, · · · , zn]⊤ ∈ Rn

represents the stacked opinions zi of all agents i ∈ A. The
complete opinion profile z determines the utility for each
agent i ∈ A. We allow for heterogeneous agents, each having
different parameters in their utility function. We first present
the utility function of agent i, then describe the various
parameters and then provide motivation for the structure of
the utility functions. In particular, we let the utility function
of agent i be

Ui(z) =
−wiri
2B

(zi − pi)
2 − ci

2

(∑
k∈A

rk
B

(zi − zk)
2

)

− 1

4ri
z4i .

(1)

While agent i expresses the opinion zi, its internal preference
on the topic is pi ∈ R. The scalar wi ∈ R>0 represents the
importance that agent i attaches to its internal preference
on the topic. The scalar ci ∈ R, called as the conformity
weight, quantifies agent i’s desire to conform with the others.
Positive ci implies that agent i wants to conform with others,
whereas negative ci implies that the agent is a contrarian. An
agent i ∈ A is said to be non-contrarian if ci ≥ 0. In our
model, expressing an opinion costs resources. Each agent i
has resources ri ∈ R>0, which can represent quantities such
as wealth, time, social influence or combinations of them.
The parameter ri can be more precisely interpreted as the rate
at which agent i “uses” the resources or exerts influence with.
In this paper, we assume the parameters ri are constant in
time. The total resources available to the collection of agents
is B :=

∑
k∈A

rk. Thus, the factor (ri/B) is the resources

available to agent i relative to the entire social group, and is
a measure of agent i’s social clout. Throughout the paper, we
make the following assumptions about the aforementioned
parameters.

Assumption 2.1: (Parameters’ Signs). For each agent i ∈
A, we assume pi ∈ R, wi ∈ R>0, ci ∈ R and ri ∈ R>0. •

Remark 2.2: (Motivation for the Utility Function). Re-
call that each agent i myopically seeks to maximize its
utility function Ui. Thus, the three terms in (1) could be
interpreted as forces on agent i’s expressed opinion zi
towards different things. The first term drives the opinion
towards its internal preference pi. The strength of this force is



directly proportional to the importance weight wi as well as
the relative social resources (ri/B) available to agent i. The
second term drives the agents towards or against conformity
depending on the sign of their conformity weight. The third
term (called the resource penalty) prevents the agent from
holding too extreme opinions. In particular, the greater the
resources that agent i has, the more extreme opinions it can
hold. Similarly, we see that the greater the relative resources
(rk/B) of agent k, the greater is its influence on the opinions
of other agents i.

In this paper, we consider a simple form of the utility
function. However, one may consider a more general and
complicated class of utility functions too. We choose a
quartic term for the resource penalty. A quadratic penalty
term would lead to a linear term in the dynamics, which
could be absorbed in the remaining terms. Another reason
for choosing a quartic penalty function is to ensure that the
opinions of the agents are bounded.

Factorizing the coefficient of the first term as wi(ri/B)
lets us separate out the agent’s importance (or bias, stub-
bornness) towards its internal preference and the agent’s
ability, due to its resources, to choose an opinion closer to
its preference. One could choose pi = zi(0) or any other
value that the agent prefers. •

Opinion Dynamics: Since each agent i ∈ A myopically
revises its opinion zi in response to others’ opinions, the
opinion vector z would generally, change with time. We
assume that at each time instant agent i revises its opinion
by doing a gradient ascent of its utility function Ui, given
in (1), with respect to its opinion zi. Thus, for each i ∈ A,
we have

żi =− wiri
B

(zi − pi)− ci

(∑
k∈A

rk
B

(zi − zk)

)
− z3i

ri
. (2)

Note that the first two terms in the opinion dynamics (2) are
similar to the Taylor’s model [4]. However, this is incidental
due to the specific form of the utility function (1). The main
difference between our model and the Taylor’s model is
the resource penalty term in our model. Additionally, we
are modeling the persuasibility constants defined in [4] in
terms of the resources ri and the weights wi. Notice that a
more complex choice of the utility function would result in
a different opinion dynamics.

Also notice that in the opinion dynamics (2), there is no
social network or graph. However, one can easily incorporate
a social network by having an additional factor of ai,k
(element of the adjacency matrix of the social network)
multiplying the term (zi − zk)

2 in the utility function (1).
However, we choose not to do it in this paper as we seek
to focus on the effect of resources available to agents on
the dynamics. The model (2) is applicable without any
modification to closely knit groups, where the social network
is a complete graph. Incidentally, the model (2) is also
applicable to very large groups of agents, where each agent is
primarily influenced by only publicly known or broadcasted

social signals. To see this, we can rewrite (2) equivalently as

żi = yi := Si(zi) + Ci(z), ∀i ∈ A, (3)

with

Si(zi) := −wiri
B

[zi − pi]−
z3i
ri
, (4a)

Ci(z) := ci [z̄ − zi] (4b)

and where
z̄ :=

∑
k∈A

rk
B
zk (5)

is the weighted average of the opinions of all agents in the
social group. So, it suffices for each agent i ∈ A to know
only z̄ and be unaware of other individual agents’ opinions.
Note that ∀i ∈ A, the self function Si(·) depends only on
the agent’s own opinion, its preference pi and its resources
ri. On the other hand, ∀i ∈ A, consensus function Ci(·)
depends only on the deviation of the agent’s opinion zi from
z̄, the weighted average of opinions of all agents in A. If
ci > 0, the agent values conformity and hence Ci(·) drives
zi towards consensus. On the other hand, if ci < 0, the
agent is a contrarian and hence Ci(·) drives zi away from
consensus. If ci = 0, z̄ does not affect the evolution of zi.

Now, notice that for each i ∈ A, Si(·) is a strictly decreas-
ing function with lim

zi→−∞
Si(zi) = ∞ and lim

zi→∞
Si(zi) =

−∞. Thus, for each i ∈ A, Si(·) has exactly one real root.
Let us denote the real root of Si(·) as mi, i.e., Si(mi) = 0.
Moreover, by considering Si(0) and Si(pi), we can verify
that 0 ≤ |mi| ≤ |pi| and mipi ≥ 0. Also note that since
ri’s are strictly positive and B is the sum of all ri’s, z̄ is
essentially a convex combination of all zi.

Objective: For the opinion dynamics proposed in this
paper, our main objective is to capture the effect of resources
available to the agents on their opinion evolution. In particu-
lar, we first aim to analyze the long-term behavior exhibited
by the opinions, more specifically, stability and asymptotic
properties of (2). We also aim to investigate the properties of
the equilibrium points of (2), including consensus equilibria
and Nash equilibria of the underlying game.

III. LONG TERM BEHAVIOR OF OPINIONS

In this section, we analyze the long-term behavior of
opinions such as ultimate boundedness and stability of the
equilibrium points of the dynamics under different condi-
tions. We also give convergence guarantees for the opinion
trajectories starting from an arbitrary initial opinion vector.
For ease of discussion, we denote the set of equilibrium
points of (2) as

E := {z ∈ Rn | ż = 0}. (6)

A. Ultimate Boundedness

If the opinions of all agents evolve according to the
dynamics given in (2) then the resource penalty forces the
opinion of every agent i ∈ A to be bounded for all time
t ≥ 0. In fact, the opinions of all agents are ultimately
bounded, which we state formally in the following result.



Theorem 3.1: (Ultimate Boundedness of Opinions).
Consider the dynamics (2). For all initial opinions z(0) ∈
Rn, ∃ η ≥ 0 and ∃T (z(0)) ≥ 0 such that |zi(t)| ≤ η,
∀t ≥ T (z(0)), ∀i ∈ A.

Proof: Consider the following radially unbounded positive
definite Lyapunov like function

V := V (z) =
1

2

∑
i∈A

z2i . (7)

The time derivative of V along the trajectories of (2) is

V̇ =
∑
i∈A

ziżi =
∑
i∈A

zi

[
−wiri

B
[zi − pi]

]
−
∑
i∈A

cizi

[∑
k∈A

rk
B

[zi − zk]

]
−
∑
i∈A

z4i
ri

≤
∑
i∈A

[
αi|zi|+ βi|zi|2 − γi|zi|4

]
for some positive constants αi, βi and γi, for i ∈ A. As the
fourth-degree terms dominate the linear and quadratic terms
for large enough z, we see that V̇ (z) < 0 for all z such that
maxi∈A{|zi|} ≥ δ for some δ > 0. This proves the claim of
ultimate boundedness. ■

Note that one can explicitly find an ultimate bound η by
computing the constants in the bound on V̇ in the proof
of Theorem 3.1. We skip it for brevity. Also note that
Theorem 3.1 holds for all values of the parameters wi, ci,
pi and ri > 0, ∀i ∈ A. In the next subsection, we impose
more conditions on the parameters and provide better results
regarding the convergence of opinions. We also provide a
more intuitive ultimate bound.

B. Stability and Convergence Analysis when all Agents are
Non-Contrarian

This subsection focuses on the case where all agents are
non-contrarian, i.e. ci ≥ 0, ∀i ∈ A. We first analyze the
stability of the equilibrium points of the dynamics (2) by
linearizing the dynamics around them. This is summarized
in the following result.

Theorem 3.2: (Stability of Equilibrium Points with All
Non-Contrarian Agents). Suppose that ci ≥ 0, ∀i ∈ A.
Then, every equilibrium point, ẑ ∈ E , of the dynamics (2) is
a locally asymptotically stable equilibrium point.

Proof: We prove the claim by linearizing the model
around an arbitrary equilibrium point ẑ ∈ E . The ijth element
of J, the Jacobian matrix evaluated at ẑ, is

[J]ij =


−wiri
B

− ci

[
1− ri

B

]
− 3ẑ2i

ri
, if i = j;

cirj
B

, if i ̸= j.

Notice that the ith Gershgorin disc of the Jacobian matrix J
has its center at

−wiri
B

− ci

[
1− ri

B

]
− 3ẑ2i

ri
,

and has the radius as∑
k∈A\{i}

∣∣∣cirk
B

∣∣∣ = ci

[
1− ri

B

]
.

This is because ci ≥ 0, ∀i ∈ A. Since wi, ri > 0, ∀i ∈ A,
all the Gershgorin discs are strictly contained in the negative
half of the complex plane. Hence, J is Hurwitz and as a
result ẑ is locally asymptotically stable. ■

Next, we show that if all the agents are non-contrarian, the
solution of (2) starting from any initial condition converges
to an equilibrium state.

Theorem 3.3: (Convergence of Opinions with All Non-
Contrarian Agents). If ci ≥ 0, ∀i ∈ A then for any
initial condition z(0) ∈ Rn the solution z(t) of the opinion
dynamics (2) or equivalently (3) converges asymptotically to
an equilibrium point.

Proof: For this proof we use the form (3) of the opinion
dynamics. The central idea of the proof is that the minimum
and maximum of yk’s, denoted as

ym := min
k∈A

{yk} and yM := max
k∈A

{yk},

converge to zero asymptotically. To show this, we first
inspect the time derivative of yi’s, which we can derive
from (3) as

ẏi = −wiri
B

yi −
3z2i
ri

yi + ci

(∑
k∈A

rk
B
yk − yi

)

≤ −
(
wiri
B

+
3z2i
ri

)
yi, ∀i s.t. yi = yM ,

since rk’s over all k ∈ A sum to B, ci ≥ 0 and yM ≥ yi for
all i ∈ A. Now, notice that the upper right hand derivative
of yM , D+yM , satisfies

D+yM = max{ẏi | yi = yM , i ∈ A}

≤ −min
i∈A

{(
wiri
B

+
3z2i
ri

)}
yM ,

where in the equation, the maximization is over a variable set
of agents at different times whereas in the inequality we fix
the set of agents over which we minimize. From Theorem 3.1
and its proof, we know that given z(0), z(t) is lower and
upper bounded for all time t ≥ 0. As wi, ri, B ∈ R>0,
we can use the comparison principle and say that there is
an exponentially decaying bound on yM . We can carry out
parallel analysis on ym also. In other words, ∃ am, aM < 0
and ∃hm, hM > 0 such that

−hm exp(amt) ≤ ym ≤ yk ≤ yM ≤ hM exp(aM t), ∀k ∈ A.

Hence |yk| for each k ∈ A converges exponentially fast to
zero. Thus, lim

t→∞
zk(t) also exists for each k ∈ A. ■

To conclude this section, we give a better and more
intuitive ultimate bound using the mi’s introduced earlier.
Recall that for each i ∈ A, Si(·) has a unique root at mi,
i.e. Si(mi) = 0. First, we define

mmin := min{mi}i∈A, mmax := max{mi}i∈A (8)



and the corresponding interval

M := [mmin,mmax] . (9)

We are now ready to show that the solutions converge to
Mn. The proof of this result follows from Theorem 3.3.

Corollary 3.4: (Convergence to the set Mn when all
Agents are Non-Contrarian). Suppose that ci ≥ 0, ∀i ∈ A.
Let mmin, mmax and M be as defined in (8) and (9). Suppose
z(t) is the solution to (2) from an initial condition z(0) ∈ Rn.
Then z(t) converges to the set Mn.

Further, suppose mmin < mmax. Then every equilib-
rium point ẑ of (2) lies in the interior of Mn. Moreover
∃T (z(0)) ≥ 0 such that z(t) ∈ Mn, ∀t ≥ T (z(0)).

Proof: First note that ∀ i ∈ A,

Si(zi)


> 0, zi < mi

= 0, zi = mi

< 0, zi > mi

, Ci(z)


> 0, zi < z̄

= 0, zi = z̄

< 0, zi > z̄.
(10)

Next, ∀z /∈ Mn, it is easy to see from (10) that ∃i ∈ A such
that żi ̸= 0. Thus, if ẑ ∈ E then ẑ ∈ Mn. Then by Theorem
3.3, the first claim is true.

Now, let mmin < mmax. From (10) notice that for any
z∗ ∈ E , for all i ∈ A, z∗i ∈ [mi, z̄

∗] or z∗i ∈ [z̄∗,mi]
depending on the sign of z̄∗−mi. Further, z̄∗ cannot be equal
to mmin or mmax because that would mean z∗i = z̄∗ for all
i ∈ A and (10) then means that there is at least one agent
i for which ż∗i ̸= 0. Finally, Si(mi) = 0 and hence if z̄∗ is
in the interior of M then no agent i can have z∗i = mmin

or z∗i = mmax. Finite time convergence to Mn then follows
from Theorem 3.3. This completes the proof. ■

The bound proposed using M has the advantage that it
depends only on the mi’s and hence can be computed easily
using the parameters wi, pi and ri. Moreover, these mi’s
can be used to give a necessary and sufficient condition for
existence of consensus equilibria, which we discuss next.

IV. EQUILIBRIUM POINTS OF THE DYNAMICS

In this section, we analyze the equilibrium points of the
opinion dynamics model. Specifically, we provide conditions
under which consensus and Nash equilibria can be equilib-
rium points of (2).

A. Consensus Equilibria

Here, we deal with the consensus equilibria of the model,
i.e., equilibria of the form ξ1, with ξ ∈ R. We refer to the
case of ξ = 0 as a neutral consensus since all the agents
have neutral opinions in this case. On the other hand, we
refer to the case of ξ ̸= 0 as a non-neutral consensus. In
the following lemma, we present conditions for (2) to have
consensus equilibria. We use the form of the dynamics in (3)
and the functions in (4) to justify our claims.

Lemma 4.1: (Necessary and Sufficient Conditions for
Existence of Consensus Equilibrium). Consider the dynam-
ics (2) and its equivalent representation (3). For each i ∈ A,
let mi ∈ R be the unique point such that Si(mi) = 0. Then,
ξ1 ∈ E if and only if mi = ξ, ∀i ∈ A. Further if ci ≥ 0,

∀ i ∈ A and if ∃M ∈ R such that mi = M , ∀i ∈ A then
E = {M1}, i.e., M1 is the unique equilibrium point of (2).

Proof: First, note that if zi = ξ, ∀i ∈ A, for some ξ ∈ R
then z̄ = ξ, where z̄ is defined in (5). Thus Ci(ξ1) = 0,
∀i ∈ A. Hence, from (3), ξ1 is an equilibrium point iff
Si(ξ) = 0,∀i ∈ A. Since mi is the unique root of Si(.) the
first claim is true.

Next, consider the special case of ci ≥ 0, and mi = M ,
∀ i ∈ A for some M ∈ R. We show the claim about the
unique equilibrium by contradiction. Suppose there exists an
equilibrium point z∗ such that z∗ ̸= M1. As z̄∗ is a convex
combination of z∗i ’s for i ∈ A, there always exists an agent
i ∈ A such that z∗i ≤ z̄∗. Consider any i ∈ A such that
z∗i ≤ z̄∗ and z∗i < M . Then, from (10), it is clear that ż∗i >
0. Similar arguments can be given for an i ∈ A such that
z∗i ≥ z̄∗ and z∗i > M to show that ż∗i < 0. This contradicts
the assumption that z∗ is an equilibrium point and hence
completes the proof. ■

Remark 4.2: (Consensus Formation among Agents).
Lemma 4.1 states that it is both necessary and sufficient
for all the mi’s to be the same for the opinion dynamics
model to have a consensus equilibrium. It is evident that if
the agents are to arrive at a consensus equilibrium, then all
their preferences pi’s must be of the same sign. Further, if
all the agents are non-contrarians and they have a consensus
equilibrium, then it is the only equilibrium of the dynamics.
In this case Theorems 3.2 and 3.3 imply that the agents
always achieve consensus starting from any initial opinion
vector. When pi = 0, ∀i ∈ A, then the only possible con-
sensus equilibrium is the neutral consensus, i.e., every agent
reaches a neutral opinion on the topic. If the preferences of
the agents have different signs, then the opinions of agents
can never reach an exact consensus in equilibrium. However,
other equilibria that are arbitrarily close to consensus may
still exist. •

When the agents attain a consensus equilibrium, we can
measure how much influence an agent has on the whole
group by measuring the deviation of the consensus value
from its preference (i.e. if ξ ∈ R is the consensus value, we
compute |pi − ξ| as a measure of the influence of the agent
i ∈ A). Note that if pi = 0, for some i ∈ A, then mi = 0
and hence the only consensus equilibrium possible is neutral.
So we consider pi ̸= 0, ∀i ∈ A to give the next result on
dominance and discuss it in the remark following it.

Lemma 4.3: (Consensus Deviation from Preference).
Consider the dynamics (2) or equivalently (3) and suppose
pi ̸= 0, ∀i ∈ A. For each agent i ∈ A, define σi := wir

2
i

and ∆i(ξ) := |pi − ξ|. Suppose ξ1 ∈ E , with ξ ∈ R.
Then σi∆i(ξ) = σj∆j(ξ), ∀i, j ∈ A, and in particular
∆i(ξ) < ∆j(ξ) if and only if σi > σj .
Proof: Since pi ̸= 0, ∀i ∈ A, we also have 0 < |mi| <
|pi| ∀i ∈ A. Then by Lemma 4.1, ξ ̸= 0. Further, from
Lemma 4.1, we know that riSi(ξ) = 0, ∀i ∈ A, which
again implies that

σi(pi − ξ) = σj(pj − ξ), ∀i, j ∈ A.

Since σi > 0, ∀i ∈ A, the result now follows. ■



Remark 4.4: (Dominance in Consensus). Let us call the
scalar σi := wir

2
i , ∀i ∈ A as the dominance weight of the

agent i. If all agents have a non-neutral preference and the
agents reach consensus equilibrium of (2) with a consensus
value of ξ ∈ R, then Lemma 4.3 states that, if an agent i has
higher dominance weight than the agent j then the consensus
value ξ is closer to agent i’s preference than that of agent j.
Note that the dominance weight is directly proportional to
the weight the agent assigns to its preference and the square
of the resources available to it. This means that an agent
with very high resources can exert more influence even if
it gives less weight to its internal preference. On the other
hand, if an agent has lower resources, then it has to have
much higher internal weight to have more influence in the
group. •

Next, we explore opinion dynamics from a game theoret-
ical point of view. In particular, we analyze the relationship
between the equilibria of the dynamics and the Nash equi-
libria of the underlying game.

B. Nash Equilibria

Here we carry out a Nash Equilibrium analysis of the
opinion formation game. Recall that every agent is interested
in maximizing its utility Ui given in (1) by suitably choosing
its opinion zi. Thus, this can be thought of as a strategic form
game G = ⟨A, (R)i∈A , (Ui)i∈A⟩ among the set of agents A,
with agent i’s strategy being its opinion zi ∈ R and its utility
function being Ui(·). For the sake of convenience, we let z−i

denote the opinions of all agents other than i. Then, the set
of Nash equilibria of the game G is

NE := {z∗ ∈ Rn | ∀i ∈ A,

Ui(z
∗
i , z

∗
−i) ≥ Ui(zi, z

∗
−i),∀zi ∈ R} . (11)

Note that for a Nash equilibrium z∗, z∗i is agent i’s best
response over all opinions zi ∈ R to z∗−i, the opinion profile
of all the other agents. However, in the dynamics (2), each
agent updates its opinion according to the gradient ascent of
its utility with respect to its opinion while assuming that the
other agents do not change their opinions. Hence, the agents
at each time instant revise their opinion to only “local” best
response. This motivates the next definition of a local Nash
equilibrium.

Definition 4.5: (Local Nash Equilibrium). A strategy
profile z∗ ∈ Rn is said to be a local Nash equilibrium if
and only if ∀i ∈ A, ∃ ρi ∈ R>0 such that

Ui(z
∗
i , z

∗
−i) ≥ Ui(zi, z

∗
−i), ∀ zi s.t. |z∗i − zi| ≤ ρi . (12)

Let the set of local Nash equilibria of G be denoted by NE l.
•

It is easy to see that a Nash equilibrium is also a local Nash
equilibrium and hence NE ⊆ NE l. In the next result, we
show that every local Nash equilibrium is an equilibrium of
the opinion dynamics.

Lemma 4.6: (Local Nash Equilibrium is an Equilibrium
of the Dynamics in (2)). If an opinion profile z∗ is such that
z∗ ∈ NE l then z∗ ∈ E , with E defined in (6).

Proof: Since z∗ ∈ NE l, it implies that ∀i ∈ A, z∗i locally
maximizes Ui(·, z∗−i). Thus, the partial derivative of Ui(·)
with respect to zi evaluated at z∗i is zero. The claim then
follows immediately from (2) and (6). ■

Lemma 4.6 states that every local Nash equilibrium of G is
also an equilibrium point of dynamics (2). But the converse
need not be true. In the following result, we give conditions
for an opinion profile z∗ ∈ Rn that is an equilibrium point of
the opinion dynamics model to be a local Nash equilibrium
of the opinion formation game.

Theorem 4.7: (Conditions for an Equilibrium Point of
(2) to be a Local Nash Equilibrium). Consider the dynamics
(2) and the set of equilibrium points E in (6). Let G =
⟨A, (R)i∈A , (Ui)i∈A⟩ represent the corresponding strategic
form game of opinion formation. Suppose z∗ =

(
z∗i , z

∗
−i

)
∈

E . For each agent i ∈ A, define

τi :=
1

3

[
− ciri

(
1− ri

B

)
− wir

2
i

B

]
. (13)

Then, z∗ ∈ NE l only if

(z∗i )
2 ≥ τi, ∀i ∈ A . (14)

Moreover, if the inequality in (14) is strict, then z∗ ∈ NE l.
Proof: Let the hypothesis be true. From Definition 4.5 we
know that z∗ =

(
z∗i , z

∗
−i

)
is a local Nash equilibrium if and

only if ∀i ∈ A, z∗i locally maximizes Ui(·, z∗−i). Now since
z∗ ∈ E , by the definitions in (2) and (6), it is clear that for
each i ∈ A, z∗i satisfies the first-order necessary conditions
for a local maximizer.

Now suppose that z∗ ∈ NE l. Then we have that

∂2

∂z2i
Ui(zi, z

∗
−i)

∣∣∣∣
z∗
i

=
−wiri
B

− ci

(
1− ri

B

)
− 3

(z∗i )
2

ri

≤ 0, ∀i ∈ A , (15)

This proves the necessary condition in (14).
Finally, note that if the inequality in (15) is strict for a

z∗ ∈ E , then by the second order sufficiency condition of
optimality, z∗i is a local maximizer of Ui(zi, z

∗
−i) for each

i ∈ A. This completes the proof. ■
The statement of the previous result can be combined with

the result in Theorem 3.1 to provide a condition for which
the opinion formation game does not have any local Nash
equilibrium. We state this in the next result, proof of which
is intuitive since no equilibrium point of (2) can exist beyond
any ultimate bound (which always exists).

Corollary 4.8: (Non-Existence of Local Nash Equilib-
ria). Suppose η is an ultimate bound for the dynamics in
(2). If there exists an agent i ∈ A such that τi > η, with τi
defined in (13), then NE l = ∅. ■

Finally, to end this section, we revisit the case of non-
contrarian agents and specialize the above results for the
case when ci ≥ 0, ∀i ∈ A. We state this in the following
result.

Theorem 4.9: (Nash Equilibria when all Agents are
Non-Contrarian). Consider the dynamics in (2), the set
of equilibrium points E in (6) and the set of local Nash



equilibria defined in Definition 4.5. Suppose ci ≥ 0, ∀i ∈ A.
Then the following statements are equivalent.

(i) z∗ ∈ E , (ii) z∗ ∈ NE l, (iii) z∗ ∈ NE .
Proof: First note that (iii) =⇒ (ii) is trivially true and

(ii) =⇒ (i) follows from Lemma 4.6. Next, we show that
(i) =⇒ (ii). Notice that ∀i ∈ A, ci ≥ 0 (by hypothesis),
wi, ri > 0 and B =

∑
j∈A rj . Then it is easy to see from

(13) that τi < 0, ∀i ∈ A. Then Theorem 4.7 proves the
implication.

Finally, we show that (ii) =⇒ (iii). Notice that if ci ≥ 0,
∀i ∈ A then (15) holds with strict inequality. This means that
∀i ∈ A, Ui(·, z∗−i) is a strictly concave function for each z∗−i.
Then from the definition of NE and NE l, the implication is
true. This completes the proof. ■

V. SIMULATIONS

In this section, we demonstrate our results using
simulations. We have used MATLAB and the ODE45
solver for simulations. We consider a group of 6 non-
contrarian agents forming their opinions according to (2).
In Figure 1, we study a case where the opinions of all
agents reach a non-neutral consensus equilibrium with
a consensus value equal to 35. The model parameters 1

used to simulate this case are as follows, the vector
containing the initial opinions of all six agents is
z0 =

[
40.54 −69.28 90.69 8.18 35.95 −92.69

]
,

the vector containing the conformity weights of all six
agents is c =

[
14.87 2.12 13.63 9.27 4.24 1.97

]
,

the vector containing the weights wi of all six agents is
w =

[
18.71 9.16 4.81 15.28 15.19 14.81

]
, the

vector containing the resources of all six agents is r =[
8.2357 1.7501 1.6357 6.6599 8.9439 5.1656

]
×

103 and mi = 35 , ∀i ∈ A which is equal to the
consensus value. Thus, the necessary and sufficient
condition of Lemma 4.1 is satisfied. The preference
vector containing preferences (pi) of all six agents is,
p =

[
36.09 84.51 142.92 37.05 36.14 38.51

]
.

For every agent i ∈ A, let z∞i denote its asymptotic
opinion value. The vector whose each element is the
absolute difference between an agent’s final consensus
opinion and its preference opinion (|z∞i − pi|) is
d =

[
1.09 49.51 107.93 2.05 1.14 3.51

]
. The

vector containing the dominance weights of all six agents is
σ =

[
1.269 0.028 0.0128 0.677 1.214 0.395

]
×109.

From this data, we can verify that the dominance claim in
Lemma 4.3 is satisfied in this case.

In Figure 2, we study a case where all agents are
non-contrarians and do not achieve consensus. The
model parameters for all six agents in this case are,
p =

[
45.04 −54.02 15.21 62.13 −19.23 97.69

]
,

z0 =
[
−82.0 −35.81 2.28 −87.88 45.14 11.31

]
w =

[
12.85 4.43 16.74 19.42 16.93 10.12

]
,

c =
[
5.58 14.93 4.74 19.15 12.41 12.01

]
and r =[

1.726 0.9035 2.5526 8.5857 9.1107 6.9963
]
×103.

1For the entirety of Section V, the ith element of any parameter data
vector corresponds to agent i. Further, all numbers have been rounded off
to two decimal places.
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Fig. 1: A group of 6 non-contrarian agents attaining a non-neutral
consensus equilibrium with consensus value= 35.

0 1 2 3 4 5
-100

-50

0

50

100

Fig. 2: A group of 6 non-contrarian agents not reaching consensus
but converging to an equilibrium within the ultimate bound Mn.

The agents do not achieve consensus because
m =

[
27.97 −16.55 14.39 58.05 −19.08 73.62

]
which violates the necessary condition for consensus given
in Lemma 4.1. From Figure 2, it can also be seen that the
opinion profile converges to an equilibrium. Moreover, the
opinions of all agents enter the set M = [−19.08, 73.62]
in finite time, which is consistent with the result of
Corollary 3.4.

When the conformity weights are allowed to be negative,
we found using simulations that the opinions evolving ac-
cording to our model can exhibit a periodic or oscillatory
behavior. Figure 3 depicts a scenario where the opinions
of two agents, having conformity weights equal to -10 and
+10, evolve according to (2) and exhibit a periodic behavior.
The model parameters for this case are z0 =

[
25.05 8.61

]
,

c =
[
−10 10

]
, w =

[
3.78 0.02

]
, p =

[
10.27 18.66

]
and r =

[
3164.2 6996.17

]
. We do not have any analytical

result which explains such behavior. The analysis and study
of limit cycles for the model are left for future works.

VI. CONCLUSIONS

In this paper, we have introduced a model which captures
the effect of resources on the opinion formation process.
Extreme opinions are penalized by the “limited” resources
of the agents. We have proved boundedness of opinions for
our model. For the case when all agents are non-contrarians,
we have proved the stability of equilibria and convergence of
opinions to some equilibrium. For a consensus equilibrium,
we justified that the greater the dominance weight of an
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Fig. 3: Periodic behavior exhibited by opinions of two agents
having the conformity weights c1 = −10 and c2 = 10.

agent, the smaller the deviation of the consensus value from
its internal preference. We analyzed our model from a game
theoretic perspective and provided results for an equilibrium
to be a local Nash equilibrium of the opinion formation
game. When all agents are non-contrarian, we also showed
that the set of equilibria of the opinion dynamics is the
same as the set of local Nash equilibria and Nash equilibria
of the underlying game. Future work directions include
extensions of the above model to a multi-topic scenario,
including a social network, analyzing periodic behavior of
opinions in the presence of contrarians, quantized consensus,
the relationship between resources and social power, and
exploration of more general resource penalty functions.
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