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Abstract—Overmodulation (OVM) techniques of asymmetrical
six-phase induction machine (ASIM) achieve higher DC-bus
utilization by applying non-zero average voltage in non-energy
transfer plane. This results into unwanted current and associated
copper loss. Existing OVM techniques reduce this loss with PWM
techniques from six-dimensional space-vector perspective, which
is both conceptually difficult and computationally challenging.
The computational complexity of space-vector based techniques
is reduced by few existing PWM techniques in linear region
by splitting the six-phase inverter as two three-phase inverters
and modulate these inverters with linear PWM techniques in
30 degree phase-shifted. This is referred as three-phase inverter
based technique in the title. But, three-phase inverter based OVM
technique doesn’t exist in literature due to lack of knowledge of
the relationship between six-dimensional space-vectors and space-
vectors of two three-phase inverters. This paper first establishes
this relation. Based on this relation, an OVM technique is
proposed where the reference voltage vectors of two inverters
are phase-shifted by 30 degree but of different magnitudes. The
proposed technique achieves THD, WTHD performances similar
to space-vector based best technique of ASIM with reduced
computational complexity, as shown in details. The proposed
strategy is validated through experiments and simulations on
six-phase induction machine at 4.2 kW.

Index Terms—Multiphase machines, pulse width modulation
(PWM), overmodulation, asymmetrical six-phase induction mo-
tor, six-phase drives, harmonic minimization.

I. INTRODUCTION

ASYMMETRICAL six-phase induction machine (ASIM)
is one of the most common multi-phase machines which

is preferred over conventional three-phase (3φ) machine in
high power applications due to advantages, like, better fault
tolerance for having phase redundancy, lower space-harmonic
content, less susceptibility towards excitation harmonics, re-
duced rating of the power-electronic components compared
to three-phase machine [1], [2]. Fig. 1 shows the six phase
windings of ASIM where the six windings can be seen
as two sets of balanced 3φ windings and the spatial shift
between these two sets is 30◦ electrical. Due to this winding
structure, 6th, 18th, 12k + 6, k = 0, 1... order harmonic
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Fig. 1: Six-phase inverter fed ASIM

torques can’t be produced even with non-sinusoidal excitation,
[3]. This fact makes ASIM advantageous over symmetrical
six-phase where all six windings are symmetrically displaced
by 60◦. Significant amount of research has been done over
last few decades to thoroughly investigate ASIM modeling
and design [4]–[6], PWM techniques [3], [6]–[17], different
control strategies [18], [19], fault tolerant operation [20]–[22].

Dynamic model of ASIM had been derived in multiple ways
in the existing literature, like, double d-q theory ( [23]), vector-
space decomposition (VSD) theory ( [6]). The later one is
the most popular way to model ASIM and the modulation
strategy proposed in this paper is based on this theory. A 6×
6 transformation matrix, T , was proposed in VSD theory to
model the six-dimensional (6 −D) ASIM. T transforms 6 −
D quantities from original frame to three 2 − D orthogonal
subspaces. It is shown in [6] that one of the subspaces, namely
α−β, is solely responsible for electromagnetic energy transfer.
The two 2−D subspaces, which are not associated with energy
transfer, have been labelled as z1−z2 and o1−o2 in this paper.
The impedance of z1−z2 and o1−o2 subspaces are small as it
consists of winding resistance and leakage inductance. As α−
β is associated with energy transfer, this subspace should be
excited with balanced fundamental voltage in order to generate
ripple-free torque in ASIM. With the balanced winding with
two isolated neutrals, as shown in Fig. 1, o1 − o2 plane can’t
be excited. Although applied voltage in z1− z2 doesn’t create
torque ripple, it causes large circulating current and associated
copper loss due to low impedance of the equivalent circuit.
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Therefore, applied voltage in z1 − z2 should be as small as
possible. Linear modulation techniques of ASIM don’t inject
any voltage in z1−z2 whereas the overmodulation techniques
do inject some voltage in z1−z2 in order to extend the region
in α− β plane available for modulation.

Linear PWM techniques of ASIM can be broadly classified
into two categories: 1) Four-dimensional space-vector based
PWM techniques, where at least four active vectors along with
the zero vector are used within a sampling period in order to
generate reference voltage vector in α − β and zero average
voltage vector in z1− z2 plane, [6]–[11]. Here, one technique
differs from others in terms of current-ripple performances. 2)
Two 3φ-inverter (TINV) based PWM techniques, as proposed
by [15], [16], where the 6φ inverter is split into two 3φ
inverters, inverter-1 and inverter-2 of Fig. 1. Inverter-1 is
modulated with half of the reference voltage vector in α− β
plane. Reference vector of inverter-2 is of same magnitude that
of inverter-1 but phase-shifted by 30◦. The second category
of techniques, i.e. TINV techniques, are referred as three-
phase inverter based technique in the title of this paper.
Carrier-comparison based implementation of TINV techniques
is computationally less burdened compared to implementation
of space-vector based techniques techniques where complex
six-dimensional transformation is involved. Modulation index
(M ) is defined as the ratio of the peak of the fundamental
component of the line to neutral voltage to the DC-bus voltage.
The maximum M achievable by both of these categories of
techniques is 0.577.

Overmodulation (OVM) of PWM converter is important for
higher DC bust utilization and reduction in voltage rating of
the switching devices and to meet higher voltage requirement
during transients and peak loading conditions, [24]. OVM of
multi-phase machines is interesting because unlike the three-
phase case, there is no torque pulsation here. OVM of five
phase machines has been widely discussed in literature, [25]–
[29]. OVM techniques of ASIM extend the range of M upto
0.622 by applying non-zero average voltage in z1 − z2 plane.
But, RMS voltage injected in this plane should be small in or-
der to have small resultant current and associated copper loss.
[3] and [10] proposed four-dimensional space-vector based
OVM techniques. The proposed technique in [3], later named
as CSVPWM in [6], uses two large active vectors adjacent to
reference voltage vector in α − β and it injects substantial
amount of harmonic voltages in z1 − z2 plane. To reduce
this RMS voltage injection, [10] has proposed two OVM
algorithms, which are labelled as SVOVM4-1 and SVOVM4-
2, respectively, in this paper. These techniques use two large
and two medium active vectors adjacent to reference voltage
vector in α − β plane. SVOVM4-2 is the best known OVM
technique in ASIM literature. One should notice that both five-
phase machine with one isolated neutral and ASIM with two
isolated neutrals require four-dimensional modulation. Four-
dimensional space-vector based OVM techniques for five-
phase machines are available in [25], [27], [28].

But, TINV based OVM techniques is an open problem in
ASIM literature. Although [17] has applied standard 3φ OVM
techniques, as proposed by [30], on individual 3φ inverters
in 30◦ phase-shifted way, this technique injects harmonic

voltages in α− β which in turn causes low-frequency torque
pulsations violating OVM condition of ASIM. In this paper,
a TINV based OVM technique is proposed which can be
implemented with reduced computational complexity, as TINV
based linear techniques, and without compromising on the
performance of the drive. Followings are the contributions of
this paper.
• In order to analyse OVM from TINV perspective, a

key relation between the six-phase quantities, obtained
using the transformation defined in [6], with three-phase
quantities, obtained through familiar 3φ − 3φ Clarke’s
transformation, is derived. This relationship is new to the
literature.

• Using that relationship, a TINV based OVM technique
of ASIM is proposed. This technique split the reference
voltage vector in α− β plane into two reference voltage
vectors of two 3φ inverters such that they are phase-
shifted by 30◦ and of different magnitudes in OVM region
but of same magnitude in linear region. The proposed
strategy works upto M = 0.5977. It attains voltage THD
performance almost similar to SVOVM4-2.

• A detailed comparison of computational burdens between
the TINV based proposed technique and four-dimensional
space-vector based SVOVM4-2 shows that the proposed
technique can be implemented at much reduced compu-
tational cost without involving complex six-dimensional
transformation.

The organization of the paper is as follows: section II
briefly discusses about the modeling of ASIM, III discusses the
existing modulation techniques. The important relationships
between three-phase and six-phase space-vectors and an OVM
technique based on the above relationship are presented in
sections IV and V respectively. Finally, the implementation
strategy, simulation and experimental results and conclusions
are discussed in sections VI, VII and VIII respectively.

II. DYNAMIC MODEL OF ASIM
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T

Xj

Xi = Xαβz1z2o1o2 =
[
xα xβ xz1 xz2 xo1 xo2

]T
Xj = Xabca′b′c′ =

[
xa xb xc xa′ xb′ xc′

]T
(1)

As six windings of ASIM can be excited from six inde-
pendent voltage or current sources, ASIM is six-dimensional.
A 6 × 6 orthonormal transformation matrix T , given in (1),
has been used in [6] for analysing the dynamic model of
ASIM. The co-ordinates in original and transformed domains
are labeled as a−b−c−a′−b′−c′ and α−β−z1−z2−o1−o2
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respectively. Here X is a six-dimensional vector whose ele-
ment x represents the machine variables, like voltage, current,
flux-linkage etc.

A six-phase inverter fed squirrel-cage ASIM is shown in
Fig. 1 where the six-phase inverter can be identified as two
three-phase inverters, inverter-1 and inverter-2 respectively.
The terminals of the six stator phase windings are a, b, c,
a′, b′, c′, which are directly connected to the poles of the six
legs of the inverter. These two sets of balanced three-phase
windings are connected in star fashion and they form two
isolated neutral points, o and o′. Therefore, voltages impressed
on o1−o2 plane by any of the switching state of this particular
configuration will be zero (as the last two rows of T give
the zero-sequence components of two sets of three-phase line-
neutral voltages). So, discussions in the subsequent sections
are focused to generate desired output voltages in α− β and
z1 − z2 subspaces.

~ψs,αβ = Ls~is,αβ + LMe
jθr~ir,αβ ; ~ψs,z1z2 = Lls~is,z1z2 ;

~ψr,αβ = LMe
−jθr~is,αβ + Lr~ir,αβ ; ~ψr,z1z2 = Llr~ir,z1z2 ;

(2)

~vk,αβ/z1z2 = rk~ik,αβ/z1z2 +
d

dt
~ψk,αβ/z1z2 ; k = s, r (3)

The machine model in α − β and z1 − z2 subspaces, as
obtained by [6], are given in (2) and (3). Here, ~ψs,αβ =
ψsα + jψsβ ; ψsα and ψsβ are stator flux-linkages in α and
β domains, respectively. Similarly, other quantities of (2) and
(3) can be interpreted. Ls − LM = Lls; Lr − LM = Llr.
Subscript s and r are used to denote stator and rotor quantities,
respectively. Followings are few assumptions made during this
modeling- sinusoidal winding distribution, infinite permeabil-
ity of iron, linear and unsaturated magnetic material, uniform
air-gap between stator and rotor. Three important properties
of this model are outlined below.
1) Six subspaces in transformed domain are orthogonal to

each other and can be grouped into three two-dimensional
subspaces, viz., α−β, z1−z2 and o1−o2 respectively. The
dynamical equations of ASIM in these three subspaces can
be analysed independently due to their decoupled nature.

2) The mutual coupling between the stator and rotor windings
appear only in α − β subspace. From this, it can be
concluded that only α−β subspace is associated with elec-
tromechanical energy conversion and torque production.
Both the dynamical and steady-state equivalent circuits in
this subspace are similar to the equivalent circuits of three-
phase induction machine with 3φ Clarke’s transformation.

3) The flux-linkages in z1−z2 and o1−o2 subspaces have no
coupling between stator and rotor, as if air-gap flux doesn’t
appear in these subspaces. The equivalent circuits in these
subspaces have winding resistance and leakage inductance.
As the impedances of these equivalent circuits are small,
any voltage applied in these subspaces causes large current
resulting into copper losses and this large current doesn’t
contribute in electromagnetic energy conversion or torque
pulsation.

From the above discussion it is clear that the excitation of
α−β plane with balanced fundamental voltage will result into

operation of ASIM similar to 3φ induction machine without
creating any torque ripple. The voltage excitations in z1 − z2

and o1 − o2 subspaces should be zero or as small as possible
in order to drive ASIM efficiently. Although the sinusoidal
winding distribution is an ideal assumption, which is not the
case in practical, space-harmonics of non-sinusoidal winding
distribution can be neglected as the mutual inductance due
to nth harmonic falls rapidly, as 1

n2 , [31]. Incorporation of
mutual leakage inductance in the dynamic modeling doesn’t
change the key properties as listed above from 1) to 3), [4].

III. EXISTING MODULATION TECHNIQUES

A brief review of existing modulation techniques of asym-
metrical six-phase inverter drives is presented in this section.
These modulation techniques can be broadly classified into
two categories: linear modulation techniques and overmodula-
tion techniques. To avoid the unnecessary copper loss, average
voltage in z1 − z2 plane is kept zero in linear modulation
region. In overmodulation region, fundamental voltage in α−β
is increased at the cost of applying non-zero voltage in z1−z2

plane. As no harmonic is injected in α−β, there is no torque
pulsation in overmodulation region. The main objective of the
overmodulation techniques is to reduce RMS current in z1−z2

plane to reduce the copper loss.

A. Linear Modulation Region

The modulation problem in linear region can be approached
in two ways- two-inverter (TINV) and space-vector (SVPWM)
approaches.

1) TINV Techniques: Let the controller provides vα and vβ ,
average reference voltages in α−β plane or reference voltage
vector in α− β (~Vref ) which is given by (4).

~Vref =∆ vα + jvβ (4)

In linear range vz1 = vz2 = 0. Here bar represents
the average voltage over a switching cycle. Due to isolated
neutral connections, vo1 = vo2 = 0. By taking inverse
transformation (T−1) on these transformed domain voltages,
the average line-neutral voltages vio and vi′o′ , i = a, b, c,
are obtained. Based on these two sets of three-phase line-
neutral voltages, two common-mode voltages voN and vo′N
are chosen independently, N is DC-bus negative terminal as
shown in Fig. 1. The most popular choice of common-mode
voltage is 1

2 + mid
2 where mid is the middle value of the

corresponding three average line-neutral voltages.
For balanced sinusoidal operation in steady-state, suppose

vα =
√

3Vo cos (ωot = θ), vβ =
√

3Vo sin θ and vz1 = vz2 =
vo1 = vo2 = 0. Therefore,

~Vref =
√

3Voe
jθ (5)

vio = Vo cos

(
θ − ki2π

3

)
, vi′o′ = Vo cos

(
θ − (

π

6
+
ki2π

3
)

)
(6)

Applying T−1 on these transformed domain voltages, line-
neutral voltages can be obtained as (6), where i ∈ {a, b, c}
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Fig. 2: Modulation of ASIM in linear region based on TINV
strategy

and ka = 0, kb = 1, kc = 2. These two sets are three-phase
balanced sinusoidal voltages and they are phase-shifted by 30◦

to each other. Equation (7a) defines 3φ Clarke transformation,
where C relates a− b− c to α− β− o. One should note here
that α−β of 3φ is different from α−β of 6φ, underline is used
to denote the three-phase transformed domain quantities. The
reference voltage vectors of the two three-phase inverters are
commonly defined as (8), where prime denotes the quantities
related to second inverter. Plugging the balanced sinusoidal
average line-neutral voltages of (6) in (7), the reference voltage
vectors of the two inverters are obtained from the definition
given in (8) as ~V ref =

√
3

2 Voe
jθ and ~V

′
ref =

√
3

2 Voe
j(θ−30◦).

One can also see that for balanced sinusoidal operation,
~V ref =

~Vref
2 and ~V

′
ref =

~Vref
2 e−j30◦ .
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Vabc

(7a)

Vα′β′o′ =∆ CVa′b′c′ ; Va′b′c′ =
[
va′o′ vb′o′ vc′o′

]T
(7b)

~V ref =∆ vα + jvβ ; ~V
′
ref =∆ vα′ + jvβ′ (8)

Therefore, it can be seen that modulation of ASIM in linear
range can be performed from two three-phase inverters with
reference voltage vectors of equal magnitude but phase-shifted
by 30◦ and reference voltage vector of one of the inverters is
half of the reference voltage vector in α − β of 6φ machine.
This is illustrated in Fig. 2 where di represents the duty ratio
of the top switch of ith leg. Here transformation matrix T

isn’t required. Based on the above idea, modulation techniques
like, Double zero-sequence injection technique ( [16]), Three-
waves based zero-sequence injection PWM, Six-waves based
zero-sequence injection PWM ( [12]) have been proposed. If
modulation index (M ) is defined as the ratio of peak line-
neutral fundamental voltage and DC-bus voltage, i.e., M =
Vo
VDC

, maximum M of asymmetrical six-phase drive in linear
region is 0.577.

2) SVPWM Techniques: In this technique, voltages gen-
erated by 64 switching states of the six-phase inverter are
mapped into α − β and z1 − z2 subspaces using T . This
mapping results into 60 active vectors and 4 zero vectors in
both α − β and z1 − z2 subspaces ( [6], [12], [17]). Using
these switching vectors, the desired reference voltage vectors
in these subspaces are synthesized. In linear region, reference
voltage vectors in α − β is given by (5) and (9) gives the
reference voltages in z1 − z2.

vz1 + jvz2 = 0 (9)

To satisfy the four constraints of (5) and (9), minimum four
active states have to be applied along with zero states. These
4 active vectors can be chosen in multiple ways. Depending
upon the choice of vectors, different modulation techniques
exist in the literature like, Vector-space decomposition (VSD)
technique in [6], 24-sector vector-space decomposition in [8],
modified 24-sector vector-space decomposition in [11], [13],
four vector technique with 2 large and 2 medium vectors in
[9], [10]. It is possible to show that all of these techniques can
attain maximum M equal to 0.577 in linear region.

It is clear from the above discussion that with TINV
techniques one can modulate ASIM from the knowledge of
two-level three-phase VSI without involving complicated six-
dimensional transformation, T . But unlike TINV, SVPWM
techniques require knowledge of T and this makes it both
conceptually and computationally challenging compared to
TINV techniques.

B. Overmodulation Region

As M > 0.577 in overmodulation region, the six-phase
inverter will inject harmonics in line-neutral voltages which
appear only in z1 − z2 plane but not in α − β. Therefore,
at the outset vα and vβ are known as before (coming from
the controller), but vz1 , vz2 are not known. Therefore, all of
the overmodulation techniques try to define vz1 and vz2 by
adopting different strategies.

vα =
1
√

3

((
vao −

vbo

2
−
vco

2

)
+

√
3

2
(va′o′ − vb′o′ )

)
=

(
vα +

1

2
(va′o′ − vb′o′ )

)
(10)
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1
√

3
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3

2
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2
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2
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vα + jvβ
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+
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1) SVPWM Techniques: [3] proposed a strategy (which
later named as CSVPWM in [6]) that uses two largest active
vectors adjacent to the reference voltage vector in α − β
plane in order to satisfy (5). Although this technique attains
maximum M up to 0.622, it applies significant amount of
voltage in z1 − z2 plane. To reduce this applied voltage,
[10] has proposed two overmodulation algorithms, which are
termed as SVOVM4-1 (space-vector based overmodulation
technique-1 with 4 active vectors) and SVOVM4-2 in this
paper, with the following assumptions:
1) These techniques use 4 active vectors. These 4 vectors form

two sets of vectors 30◦ apart in α − β plane. Each set
comprising of 1 large and 1 medium active vectors of α−β
plane which are along the same direction in α−β and 180◦

apart in z1 − z2.
2) No zero vector is applied.

With the above choice of vectors, SVOVM4-2 has optimized
the length of the applied average voltage vector in z1 − z2

plane.
2) TINV Techniques: [17] has extended the idea of two-

inverter based modulation by operating individual three-phase
inverters through overmodulation schemes proposed in [30]
where the second 3φ inverter follows the first inverter at a
phase lag of 30◦ with respect to fundamental frequency. But
these overmodulation schemes inject harmonics in α−β plane
and results into torque pulsation. Therefore, no two-inverter
based overmodulation technique exists in the literature.

To suggest an overmodulation strategy based on two-inverter
approach, one needs to relate the six-phase transformed do-
main quantities with three-phase transformed domain quan-
tities. We can see from (8) that for sinusoidal operation in
linear range, vα + jvβ =∆ ~Vref = ~V ref + ~V

′
refe

j30◦ .
• Does this relation hold in general?
• Can we write the reference voltage vector in z1−z2 plane

in terms of vα + jvβ and vα′ + jvβ′?
These questions are answered in the next section by propos-

ing an alternative way of modeling the asymmetrical six-phase
inverter.

IV. RELATIONSHIP BETWEEN THREE-PHASE AND
SIX-PHASE SPACE-VECTORS

In (7a) and (7b), each of the two sets of three-phase voltages
have been transformed individually to αβo and α′β′o′ using
well-known Clarke’s 3φ− 3φ transformation C. Now we will
try to relate Vαβz1z2o1o2 with Vαβo and Vα′β′o′ . Using (1),
(7a) and (7b) for voltage quantities, we can write (10) and
(11). Then combining (10) and (11), we get (12). The under-
bracketed term in RHS of (12), Vu, is simplified and expressed
compactly in (13). Using (12) and (13), one gets the key
expression (14a). Similarly, combining vz1 and vz2 using (1),
(7a), (7b) and (13), one gets another important expression
(14b). Here * is complex conjugate operation. In (14c), o1−o2

quantities have been written in terms of zero-sequence of the
two three-phase inverters.

vα + jvβ =
((
vα + jvβ

)
+
(
vα′ + jvβ′

)
ej30◦

)
(14a)

vz1 + jvz2 =
((
vα + jvβ

)
−
(
vα′ + jvβ′

)
ej30◦

)∗
(14b)

vo1 + jvo2 = vo + jvo′ (14c)

Although the above relationship is shown for line-neutral
voltages, it is true for other variables as well, like, current,
flux linkage, etc. One can model ASIM with these 3φ space-
vectors and apply (14) to obtain the model in α−β and z1−z2.
The resultant model is same as the model given in (2), (3),
as obtained by [6]. Fig. 3 shows the two ways to obtain the
transformed quantities from the quantities in original domain.

Fig. 3: Two ways to obtain quantities in transformed domains

We had anticipated (14a) in previous section for average
vectors in linear range. But here we can see that both (14a) and
(14b) are true on an instantaneous basis. These two expressions
are the key results where the complex vectors in α − β and
z1 − z2 are expressed as the linear combination of 3φ space-
vectors and their complex conjugates. These are essential
for analysis of overmodulation of six-phase drive from two-
inverter perspective, as we will see in next section.

Two-inverter based linear modulation techniques can be
readily explained using above two expressions. If we take
switching cycle average of (14a) and (14b), then combining
these equations with average reference voltage vector equa-
tions of linear modulation techniques ((4), (8) and (9)), one
can get ~V ref =

~Vref
2 and ~V

′
ref =

~Vref
2 e−j30◦ .

V. PROPOSED OVERMODULATION TECHNIQUE

For the sake of convenience, two complex space-vectors are
defined as follows.

Fig. 4: Voltage vectors of three-phase inverter



IEEE POWER ELECTRONICS REGULAR PAPER 6

(a) Boundaries of V1, V2 and V1 + V2 (b) 12 sectors in α− β (c) Region of overmodulation of the proposed technique for 0 ≤
θ ≤ 15◦

Fig. 5: Proposed overmodulation technique

V1 =∆
(
vα + jvβ

)
;V2 =∆

(
vα′ + jvβ′

)
ej30◦

Taking switching cycle average on above equation and
comparing with (8), one can see that V1 = ~V ref and
V2 = ~V

′
refe

j30◦ . With these new notations, reference voltage
vectors in α− β and z1 − z2 can be written as follows.

~Vref =(V1 + V2) (15a)

vz1 + jvz2 =(V1 − V2)∗ (15b)

Each three-phase inverter of Fig. 1 has 8 permissible switch-
ing states. Fig. 4 shows the voltage vectors generated by these
switching states in α − β (following (7a) or (7b)). Table I
shows the labels used to identify the switching state of three-
phase inverter. Each of these labels consists of three binary
numbers corresponding to switching state of three legs, a, b
and c, respectively, in order. Here 1 denotes the top switch of
a leg is ‘on’ and bottom switch is ‘off’ and 0 denotes vice-
versa. The tips of 6 voltage vectors lie on the vertices of a
regular hexagon and two states result into the zero vector, as
shown in Fig. 4. It is possible to show that the tip of the
average voltage space-vectors generated by individual three-
phase inverters (~V ref and ~V

′
ref ) lie within this hexagon in

order to satisfy the duty ratio constraints of the switches.

TABLE I: Switching States of Three-phase Inverter

Switching State Label Switching State Label

000 0 011 4
100 1 001 5
110 2 101 6
010 3 111 7

As V1 = ~V ref , V1 will lie within hexagonal boundary as
~V ref and the boundary is shown in Fig. 5a with the label B1.
V2 = ~V

′
refe

j30◦ , therefore boundary of V2, B2, is obtained by
rotating the hexagonal boundary of ~V

′
ref by 30◦, as shown in

Fig. 5a. The length of the sides of these two hexagons is VDC√
3

.
For brevity, all the lengths are scaled with a factor of 1

VDC
.

Therefore, length of each side of these two hexagons becomes
1√
3

, as shown in Fig. 5a. The outermost do-decagon D1 in Fig.
5a is the largest do-decagon obtained from vector addition of
all possible V1 and V2 lying within B1 and B2 respectively.
Therefore, ~Vref should lie within D1 in accordance to (15a).
In linear modulation range, both (15b) and (9) give V1 = V2.
With this constraint, the maximum boundary of both V1 and
V2 is the boundary of the intersection region of B1 and B2,
which has a shape of regular do-decagon. This is shown in
Fig. 5a by dotted blue line. D2 is obtained by doubling this
intersection region and hence tip of ~Vref has to lie within D2

in linear range. In overmodulation (M > 0.577), tip of ~Vref
will lie partially or fully in the region between D1 and D2.

The α−β plane consists of 12 equivalent sectors, as shown
in Fig. 5b. As the modulation in all of these 12 sectors will
be similar, only sector-1 (−15◦ ≤ θ ≤ 15◦) is considered for
discussion. The boundaries of V1, V2 and V1 + V2 in 0◦ to
15◦ and 0◦ to −15◦ are symmetric with respect to real axis
and therefore discussion can be further restricted to 0◦ to 15◦.
Fig. 5c shows the zoomed version of part of Fig. 5a when
0◦ ≤ θ ≤ 15◦. OC = 1√

3
, as C is the vertex of hexagon B1.

∠OCA = 60◦, ∠COA = 15◦, ∴ ∠OAC = 105◦. Applying
sine rule, we get

OC

sin∠OAC
=

OA

sin∠OCA
=⇒ OA =

1

2 cos 15◦

As ∠OBA = 90◦, OB = OA cos 15◦ = 1
2 . OE = 2 ×

OB = 1, as DE, part of D2, is obtained by doubling each
vector lying on the line AB. These lengths are indicated in Fig.
5c. All variables in modulo sector (sector-1) will be labelled
with subscript m.

In Fig. 5c, V1m ∈ ∆OAC and V2m ∈ ∆OAB, where
line segments AC and AB belong to the boundaries B1 and
B2 respectively. Let V1m = ρ1e

jφ1 and V2m = ρ2e
jφ2 . In

linear modulation range, V1m = V2m implies ρ1 = ρ2 and
φ1 = φ2. As the maximum abscissa V2m can have is OB = 1

2 ,
therefore, the maximum abscissa V1m can have is also OB =
1
2 in case of V1m = V2m which implies V1m+V2m can have
maximum abscissa as OE = 1. Thus, linear techniques allow
us to realize any ~Vref,m whose tip lies within ∆ODE, where
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Fig. 6: ρb(φ) as function of φ with VDC = 1

DE is part of D2. To realize any ~Vref,m so that it’s tip lies
within quadrilateral DEGF , where abscissa is greater than 1,
we can’t have both ρ1 = ρ2 and φ1 = φ2. So, let us keep
φ1 = φ2 but ρ1 6= ρ2. The area within quadrilateral DEGF ,
which can be utilized for modulation with this strategy, is
determined as follows.

As φ1 = φ2, both V1m and V2m subtend same angle with
respect to OG and suppose φ1 = φ2 = φ. To find the max-
imum boundary achievable with this condition, let both V1m

and V2m move along their boundary keeping φ1 = φ2 = φ.
These vectors (V1b and V2b) are shown in Fig. 5c. Subscript
b stands for boundary value. In Fig. 5c, V1b = OY and
V2b = OX . ∠COY = φ = ∠BOX . ∴ ∠OY C = 120◦ − φ.
Applying sine rule, we get

OC

sin∠OY C
=

OY

sin∠OCY
and OX =

OB

cosφ

and therefore, the absolute values of V1b and V2b can be
expressed as functions of φ as follows.

OY = ρ1b(φ) =
1

2 cos (30◦ − φ)

OX = ρ2b(φ) =
OB

cosφ
=

1

2 cosφ

(16)

Using (15a), the boundary of ~Vref,m (~Vrefb) in this strat-
egy can be determined by taking summation of ρ1b(φ) and
ρ2b(φ) for 0◦ ≤ φ ≤ 15◦. This is shown in Fig. 5c where
~Vrefb(φ) = ρb(φ)ejφ moves along curve GD and ρb(φ) =
ρ1b(φ)+ρ2b(φ). Therefore, in addition to ∆ODE, the shaded
region within DEGF (DEG) can be used for modulation
of ASIM in α − β plane. Clearly, ρb(φ = 0◦) = OG and
ρb(φ = 15◦) = OD. Fig. 6 plots ρb(φ) as function of φ for
0◦ ≤ φ ≤ 15◦. It can be seen that ρb(φ) is monotonically
decreasing function in this range and therefore OD is the
minimum vector length among the vectors whose tips lie on
the curve DG. Therefore, the maximum length of the voltage
vector that is possible to synthesize for all possible angles
(0◦ ≤ θm ≤ 15◦), is OD and the maximum modulation
index attainable with this strategy can be obtained by equating
the absolute value of the circular reference voltage vector of
(5) with OD. As Vo = MVDC and all lengths are scaled
with a factor 1

VDC
, reference voltage vector of (5) in modulo

sector becomes ~Vref,m =
√

3Mejθm , where θm is the angle
in modulo sector. Therefore, the maximum modulation index,

Fig. 7: V1 and V2 in the proposed technique for 0◦ ≤ θ ≤ 15◦

and an M ∈ (0.577, 0.5977)

Mmax = ρb(15◦)√
3

= 1√
3 cos 15◦

= 0.5977, can be derived
analytically.

A. Modulation Strategy

When M lies within the range 0 ≤ M ≤ 0.577, tip of
~Vref,m always lie within ∆ODE and therefore TINV based
linear modulation strategy, as discussed in section III-A, will
be adopted. For 0.577 ≤ M ≤ 0.5977, tip of ~Vref,m lies
partially outside ∆ODE but within area ODG, as shown by
curve UV in Fig. 7. Let, ~Vref,m intersects the line DE at K
at an angle δ and therefore

√
3M cos δ = OE = 2OB = 1,

which gives

δ = cos−1

(
1√
3M

)
(17)

So, δ is function of M alone. For 0◦ ≤ θm ≤ δ, ~Vref,m
(UK) lies outside ∆ODE. To satisfy (15a) with the adopted
strategy (φ1 = φ2), following equation needs to be solved.

V1m + V2m =∆ ρ1e
jφ1 + ρ2e

jφ2 = ~Vref,m =
√

3Mejθm

which gives

φ1 = θm = φ2 (18a)

ρ1 + ρ2 =
√

3M (18b)

There are 4 unknowns and 3 equalities in the above equa-
tion. Therefore, we have one degree of freedom. It can be seen
from (15b) that the vector length applied in z1− z2 plane can
be minimized by minimizing |V1−V2|. Therefore, the above
degree of freedom can be utilized in order to choose ρ1,2 for
minimizing |V1m − V2m|. With φ1 = φ2, minimization of
|V1m−V2m| becomes equivalent to minimization of |ρ1−ρ2|.
To minimize |ρ1 − ρ2|, V1m and V2m should be as close
as possible. When V1m = V2m and both move along BA,
we get ED in α − β plane. Therefore, to attain voltage
vector beyond ED keeping |ρ1 − ρ2| minimum, V2m should
lie on its boundary, i.e., BA. Hence for 0◦ ≤ θm ≤ δ
(UK part), V2m moves along BI ( locus is shown by red
colour) which gives ρ2 = OB

cosφ2
= 1

2 cos θm
. To satisfy (18b),

ρ1 = (
√

3M − 1
2 cos θm

) and V1m moves along HI in Fig.
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7. In KV part, ~Vref,m lies within ∆ADE and ρ1 = ρ2 will
give zero voltage injection in z1 − z2 plane. Therefore for
δ ≤ θm ≤ 15◦, V1m = V2m =

~Vref,m
2 and both of them move

along circular arc IJ .
This modulation strategy is summarized for 0◦ ≤ θm ≤ 15◦

in the α−β plane, as follows. When tip of ~Vref,m lies within
∆ODE, it is in linear region and solution is given by (19). If
tip of ~Vref,m lies within area EDG, it is in overmodulation
and solution is given by (20). One of the ways to determine the
linear or overmodulation region is to check whether θm ≶ δ,
where δ is given in (17). Another way is to check whether
vαm ≶ OE = 1. In most of the applications, input to the
PWM modulator is (vα, vβ), instead of (M, θ). Therefore,
solutions in (19) and (20) are given in terms of both (vαm,
vβm) and (M, θm).

V1m = V2m =
~Vref,m

2
=∆
vαm

2
+ j

vβm
2

(19)

V2m =
1

2 cos θm
ejθm =

1

2
+ j

1

2
tan θm =

1

2
+ j

1

2

vβm
vαm︸ ︷︷ ︸
y2m

V1m =
(√

3M − 1

2 cos θm

)
ejθm = ~Vref,m − V2m

= (vαm −
1

2
) + j(vβm − y2m)

(20)
Above solutions, which are given in terms of (vαm, vβm),

are also valid for lower-half of sector-1 (−15◦ ≤ θ ≤ 0◦ in
α−β plane). Solutions for kth sector, where k ∈ {1, 2, ..12},
are derived from (19) and (20), as follows. If (vα, vβ) are
given, k can be identified and subsequently, corresponding
modulo-sector voltages can be determined by applying ro-
tational transformation of (21). From this (vαm, vβm), V1m

and V2m are determined from (19) or (20) depending upon
vαm ≶ 1. If vαm > 1, V2m moves along it’s boundary (BI
in Fig. 7) as boundary of V2, B2, is within the boundary of
V1, B1, in modulo sector. From Fig. 5b, one can see that this
is true for all odd sectors. In even sectors, B1 lies within B2.
Based on this observation, reference voltage vectors per three-
phase inverters can be determined from (22), where x = 1
and y = 2 when k is odd; x = 2 and y = 1 when k is even.
Applying inverse transformation of (7a), modulation signals,
vpo and vp′o′ where p ∈ {a, b}, can be derived. Combining
(21), (19), (20) (22) and inverse transformation of (7a), final
expressions of these modulating signals are given in (26), (27)
and (28) in APPENDIX.

vαm + jvβm = (vα + jvβ) e−j(k−1)30◦

vαm = vα cos (k − 1)30◦ + vβ sin (k − 1)30◦ (21a)

vβm = −vα sin (k − 1)30◦ + vβ cos (k − 1)30◦ (21b)

(
vα + jvβ

)
=∆ V1 = Vxmej(k−1)30◦(

vα′ + jvβ′
)

=∆ V2e
−j30◦ = Vymej(k−2)30◦

(22)

B. Derivation of harmonic components of the line-neutral
voltages

The harmonic components of the line-neutral voltages re-
sulted due to voltage injection in z1 − z2 plane will be
derived in this section. The applied voltages in α−β subspace
don’t contain any harmonics. The voltage injection in z1− z2

plane can be determined using (15b) from the knowledge of
V1 and V2 ((20) and (19)). These voltage expressions for
0◦ ≤ θ ≤ 360◦ are given in (29) and (30) in APPENDIX,
where k ∈ {0, 1, ...5}. The harmonic components of vz1,2
can be obtained using Fourier series analysis. The inverse
transformation of (1) enables us to express the line-neutral
voltages in the original domains in terms of voltages in trans-
formed domains. Equation (23) expresses a-phase voltage. As
vo1,2 = 0 and vα doesn’t have any harmonics, therefore the
harmonics present in vz1 will appear in vao with a scaling
factor of 1√

3
. The analytical closed-form expression of nth

harmonic components of vao is given in (31) in APPENDIX.
The order of harmonics present in the line-neutral voltages
are n = 5, 7, 17, 19, ...12m ± 5 and the coefficients of (31)
become zero for other odd harmonics. It is difficult to give a

generalised expression for
∫ δ

0

tan θ sin (nθ)dθ in terms of n

and δ. Compared to other harmonics present in the line-neutral
voltages, impacts of 5th and 7th harmonics are significant
due to low impedance of equivalent circuit in z1 − z2 plane.
Therefore, results of this definite integration for n = 5 and
n = 7 are given in (32) and (33) in terms of δ. For a
given M , one can obtain the analytical estimation of 5th and
7th harmonics present in the line-neutral voltages by using
(17), (31), (32) and (33). As vα(θ) = vβ(θ + 90◦) and
vz1(θ) = vz2(θ + 90◦), it is possible to show that the other
line-neutral voltages will have odd harmonics spectra similar
to vao.

vao =
1√
3

(vα + vz1 + vo1) (23)

C. Comparisons of modulation techniques based on analysis

Fig. 8 and 9 compare the modulation signal, vao, and vz1 ,
respectively, of the proposed technique and the existing over-
modulation techniques of ASIM at M = 0.597. In Fig. 8, the
proposed strategy has almost similar waveform to SVOVM4-
2 and both of these strategies have less distortion compared
to SVOVM4-1 and CSVPWM. As vz1(θ) = vz2(θ + 90◦),
waveform of vz2 is not shown. Voltage injection by CSVPWM
in z1−z2 plane is significantly higher compared to other three
techniques and it is plotted in different scale in Fig. 9. Among
the rest three techniques, vz1 of SVOVM4-2 and the proposed
technique are almost similar and they are better compared to
SVOVM4-1. vz1 of SVOVM4-2 is zero for some θ whereas it
is non-zero in case of the proposed technique at M = 0.597.
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TABLE II: Comparison of harmonic performances CSVPWM
with other three techniques at M = 0.597 (in %)

5th 7th THD WTHD
CSVPWM 8.8 4.36 16.55 3.13
SVOVM4-1 2.15 0.40 4.03 0.73
SVOVM4-2 1.08 0.91 2.38 0.42

Proposed technique 1.01 1.01 2.39 0.41

(a) CSVPWM (b) SVOVM4-1

(c) SVOVM4-2 (d) The proposed technique

Fig. 8: Comparison of modulating signals at M = 0.597

Although the proposed technique or SVOVM4-1, SVOVM4-
2 try to minimize THD in line-neutral voltages in order to
minimize the injected voltage in z1−z2, the main objective is
to reduce the current THD in order to reduce the copper loss
in z1−z2 plane. As leakage inductance becomes predominant
over winding resistance for higher order harmonics, therefore
current THD reduction is equivalent to reduction of weighted
THD (WTHD) whose expression is given below.

WTHD =

√∑
n=12m±5( vao|nn )2

Vo

The harmonic performance of CSVPWM is worse by several
orders compared to other three techniques over the entire range
of 0.577 ≤M ≤ 0.597. Table II compares 5th harmonic, 7th

harmonic, THD and WTHD of line-neutral voltages of all four
techniques at M = 0.597. Therefore, Fig. 10 compares those
three techniques which have comparable harmonic perfor-
mances. Harmonics up to 100th order have been considered for
the computation of WTHD. 5th harmonic performance of the
proposed technique is better than SVOVM4-1 and SVOVM4-
2 whereas SVOVM4-1 is the best technique in terms of 7th

harmonic injection. THD and WTHD performances of the
proposed technique and SVOVM4-2 are almost similar and
they are better compared to SVOVM4-1. THD performance of
SVOVM4-2 is marginally better than the proposed technique
whereas WTHD performance of proposed technique is better
compared to SVOVM4-2 at higher M . As WTHD is the
indicator of copper loss, the proposed technique will give the
lowest copper loss among all four overmodulation techniques,
as we will see in section VII.

(a) CSVPWM (b) SVOVM4-1

(c) SVOVM4-2 (d) The proposed technique

Fig. 9: Comparison of vz1 at M = 0.597

(a) 5th harmonics (b) 7th harmonics

(c) Voltage THD (d) Voltage WTHD

Fig. 10: Comparison of harmonic performances

D. Comparisons of two-level 6φ inverter fed ASIM and three-
level NPC fed 3φ-IM

As both multi-phase machine and multi-level converter
configurations lead to reduction of voltage stress of the de-
vices which is useful in medium-voltage high-power drives,
comparison of these two configurations is important. For a
given induction machine of rated power, it can be shown that
the blocking voltage rating of the twelve switches in two-level
6φ inverter fed ASIM configuration with proposed technique
is lesser than that of three-level neutral-point-clamped (NPC)
inverter fed 3φ induction machine (IM) configuration. Current
ratings of both the configurations are same. The later needs
six additional clamping diodes. In case of fault in one phase,
the de-rating factors of ASIM and 3φ-IM are 1

6 and 1
3 ,

respectively, which shows that fault-tolerance of two-level 6φ
inverter fed ASIM is higher as compared to three-level NPC
fed 3φ-IM.
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Fig. 11: Flowchart of the proposed strategy

VI. IMPLEMENTATION STRATEGY AND COMPUTATIONAL
BURDEN OF THE PROPOSED TECHNIQUE

Following steps are required in order to determine six duty
ratios of top switches of six half-bridge legs of Fig. 1 from
the given vα and vβ pair. By comparing these duty ratios with
triangular carrier, PWM modulator block generates six gating
pulses of top six switches and six complemented gating pulses
with fixed dead-time for bottom switches.
1) Step-1 Sector Identification: Depending upon signs of vα

and vβ , the reference voltage vector, ~Vref =∆ vα+jvβ , may
lie in one of the four quadrants in α−β plane. Each quad-
rant consists of four sectors, as shown in Fig. 5b. Maximum
three inequalities need to be checked for identifying the
exact sector within one quadrant. For example, following
inequalities need to be checked sequentially from l = 0 to
l = 2 to identify the sector in first quadrant.

vβ ≤ vα tan ((2l + 1)15◦); l ∈ {0, 1, 2}

2 comparisons (COMPs) are required to determine the
quadrant and maximum 3 multiplications (MULs) and 3
COMPs are required to check the three inequalities within
a quadrant. Once the sector, k, is identified, remaining
calculations are performed in the corresponding sector
within if-else block.

2) Step-2 Region Identification: After identifying k, rota-
tional transformation of (21) is applied to find vαm, as
follows.

vαm = vα cos ((k − 1)30◦) + vβ sin ((k − 1)30◦)

If vαm ≤ 1, ~Vref is in linear region. Otherwise, it is
in overmodulation region. Maximum 2 MULs, 1 addition
(ADD) and 1 COMP are required to identify the region.

3) Step-3 Determination of modulation signals: Based on
linear or overmodulation region of operation and k, 4

modulation signals can be calculated, which are given
in (26), (27) and (28) in APPENDIX. 7 MULs and 3
ADDs/subtractions (SUBs) are required to compute 4 mod-
ulation signals in linear region. In overmodulation region,
vβm is calculated first from (21). Similar to vαm calcula-
tion, it requires 2 MULs and 1 ADD. With pre-determined
vαm and vβm, y2m, which is given in (20), is evaluated
by 1 division (DIV) and 1 MUL. The coefficients in (27)
or (28) are constant numbers for a given k, therefore, they
needn’t to be calculated on-line or stored in a table. After
y2m is calculated, maximum 4 MULs and 7 ADDs/SUBs
are required to compute 4 modulation signals from (27)
or (28) at any sector k. Although this isn’t obvious from
(27) and (28), one can see after plugging any k within
{1, 2..12} that few coefficients of (27) and (28) become
either 1 or 0 and only aforementioned computations are
required. For two isolated neutral connection, as shown in
Fig. 1, vco and vc′o′ can be calculated as (24) and additional
2 ADDs/SUBs are required to do so.

vco = −(vao + vbo); vc′o′ = −(va′o′ + vb′o′) (24)

4) Step-4 Determination of duty ratios: This paper uses
1
2 + mid

2 common-mode voltages per three-phase inverters.
Therefore, six duty ratios are calculated as (25). Here
x ∈ {a, b, c} and y ∈ {a′, b′, c′}, mid and mid′ are
the middle values of three modulation signals of two
three-phase inverters, respectively. Maximum 6 COMPs are
required to determine mid and mid′ and 8 ADDs, 2 MULs,
2 assign operations are required to calculate all duty ratios.

dx = vxo + (1 +mid)
1

2
; dy = vyo′ + (1 +mid′)

1

2
(25)

Fig. 11 shows the algorithm to implement the proposed
strategy in flowchart format. The computational burden of the
above steps are shown in Table III.

When the computational burden of overmodulation tech-
niques of ASIM are compared, it is seen that CSVPWM
needs lowest computation as it is devoid of calculation of
z1 − z2 plane voltages. But, CSVPWM causes substantially
higher copper loss, as we will see in section VII, and there-
fore, it is needless to compare with the proposed technique.
As SVOVM4-1 and SVOVM4-2 have harmonic performance
comparable to the proposed technique, they are compared.
It is mentioned in [10] that off-line calculated lookup table
based SVOVM4-1 and SVOVM4-2 don’t have any significant
difference in execution time. Therefore, computational burden
of SVOVM4-2 is compared with the proposed technique. The
scaling factor of transformation matrix used by [10] is different
from (1). For the sake of continuity, all the expressions related
to SVOVM4-2 are re-evaluated with respect to (1) in the
following discussion.

The implementation strategy of SVOVM4-2 is discussed
in [10]. 1) Sector identification (step-1), same as discussed
before, is required to determine k. 2) The second step, i.e.,
region identification, consists of two sub-steps-2a) Calculation
of vα,βm from the given vα,β using (21), which requires
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TABLE III: Comparison of Computational Burdens of the Proposed Technique and SVOVM4-2

ADD/SUB MUL/DIV COMP
Proposed SVOVM4-2 Proposed SVOVM4-2 Proposed SVOVM4-2

Step-1 0 0 3 3 5 5
Step-2 1 3 2 5 1 3
Step-3 10 19 8 17 0 0
Step-4 8 8 2 2 6 6

Total 19 30 15 27 12 14

Fig. 12: Experimental set-up

TABLE IV: Steady-state Equivalent Circuit Parameters of
ASIM

Per phase stator and rotor resistances 0.675 Ω
Per phase stator and rotor leakage inductances 3.75 mH

Per phase magnetizing inductance 0.168 H

TABLE V: Operating Conditions of Experiments and Simula-
tions

Peak fundamental line-neutral voltage (Vo) 120
√

2 V
Fundamental frequency (fo) 50 Hz

Output power 4.2 kW
Switching frequency (Fs = 1

Ts
) 5 kHz

TABLE VI: Simulation based comparison of copper losses in
z1 − z2 plane (in Watt)

M 0.581 0.585 0.589 0.593 0.597

CSVPWM 41.04 41.01 41.06 40.98 40.84
SVOVM4-1 0.37 0.43 0.63 1.34 2.61
SVOVM4-2 0.42 0.47 0.68 0.98 1.42

Proposed technique 0.36 0.47 0.54 0.80 1.09

4 MULs and 2 ADDs; 2b) Zone identification based on
vα,βm. If vαm > 1, it is in overmodulation region. The
overmodulation region in sector-1 is divided into three zones.
Based on vβm ≶ 0 and 2

√
3vαm±vβm > (2+

√
3) inequalities

are satisfied or not, zone is identified. It requires 1 MUL, 1
ADD/SUB and 3 COMPs. Therefore, step-2 requires 5 MULs,
3 ADD/SUBs, 3 COMPs. 3) The third step, determination of
modulation signals, consists of three sub-steps: 3a) Calculation
of vz1m, vz2m-In overmodulation, vz1m = vαm−1. In zone-1,
vz2m = 0. In zone-2 and zone-3, vz2m = ±2

√
3vα + vβ ∓

(2 +
√

3). Therefore, maximum 3 ADD/SUBs, and 1 MULs
are required. 3b) Find vz1,2 from vz1,2m using co-ordinate
transformation vz1 +jvz2 = (vz1m+jvz2m)ej(k−1)150◦ which
requires 4 MULs and 2 ADD/SUBs. 3c) From given vα,β and
already calculated vz1,2 , six modulation signals are computed
by taking inverse transformation of (1). The last two columns
of the inverse matrix are not required as vo1,2 = 0. This
sub-step requires 12 MULs and 14 ADD/SUBs. Therefore,
step-3 requires 19 ADD/SUBs, 17 MULs. 4) Step-4, i.e.,
calculation of six duty ratios from modulation signals, is
same as explained for the proposed algorithm. Computational
burdens of these four steps are tabulated in Table III.

Comparing computational burdens in Table III, one can see
that the proposed technique can be implemented upto M =
0.5977 at much reduced computational cost as compared to
SVOVM4-2 without compromising in performances, as can be
seen from Fig. 10.

VII. EXPERIMENTAL AND SIMULATION RESULTS

A. Description of the experimental set-up

A 5 kW, two-pole, 50 Hz squirrel-cage ASIM coupled with
5 kW DC generator (acts as load) has been used to vali-
date the modulation strategy experimentally. The steady-state
equivalent circuit parameters of this machine are shown in
Table IV. 1200 V, 75 A SEMIKRON IGBT (SKM75GB123D)
based half-bridge module has been used to build the six-
phase inverter. Zynq-7010 based controller platform is used
to generate the PWM signals of the inverter. Zynq-7010 from
Xilinx is a system on chip (SoC) which has both processor
of dual-core ARM Cortex-A9 architecture (PS) as well as
Programmable Logic cells (PL), connected through parallel
AXI bus. The clock frequency of the processor can go upto
866 MHz. PL has 28k logic cells, 2.1 Mb block RAM, 80 DSP
Slices and 100 I/O pins. In this work, clock frequencies of PS
and PL are set to 666 MHz and 100 MHz, respectively. Fig. 12
shows the experimental set-up. The six-phase inverter drives
the ASIM which is coupled with a separately excited DC
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(a) Experimental ia and ia′ (b) Experimental ia, ib, ic (c) Experimental vab and va′b′

(d) Simulated ia and ia′ (e) Simulated ia, ib, ic (f) Simulated vab and va′b′

(g) Experimental iα, iβ (h) Experimental iz1 , iz2 (i) Spectrum of experimental vab

(j) Spectrum of experimental ia (k) Spectrum of simulated vab (l) Spectrum of simulated ia

Fig. 13: Experimental and Simulation results of the proposed technique at M = 0.597.

generator, which are shown separately in Fig. 12a and 12b. The
rated output voltage of generator is 400 V and is connected
across a resistive load bank. Tektronix MSO2024B, MDO3104
oscilloscopes, TCP0030A current probes and P5200A differ-
ential voltage probes are used during experiment. The overall
experimental set-up is shown in Fig. 12c. To validate the
proposed strategy in simulation, dynamic model of ASIM is
developed in Matlab Simulink using the circuit parameters
of Table IV. The inverter is simulated using ideal switches.
All the experimental and simulation results correspond to the
operating conditions shown in Table V. As MVDC = Vo =
120
√

2 = 169.7 V, DC-bus voltage VDC has been changed for
different M to keep their product constant.

B. Steady-state results

Experiments have been performed at five M values spaced
equally within 0.577− 0.597. Fig. 13 shows the experimental
and simulated results at maximum M , i.e., M = 0.597. Fig.
13c shows the line-line voltages vab and va′b′ which are phase
shifted by 30◦. Simulated line-line voltages are shown in Fig.
13f. Fig. 13a shows the phase currents ia and ia′ (phase
shifted by 30◦ to each other) which closely matches with the
simulated waveform shown in Fig. 13d. Phase currents ia, ib,
ic are balanced three-phase currents phase-shifted by 120◦ to
each other, as shown in Fig. 13b and 13e. The other set of
three-phase currents (ia′ , ib′ , ic′ ) is similar but phase shifted
by 30◦ with respect to the above set and hence isn’t shown.
Fig. 13g and 13h show the experimentally obtained currents in
α−β and z1−z2 planes, respectively. To obtain the currents in
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(a) CSVPWM (b) SVOVM4-1

(c) SVOVM4-2 (d) The proposed technique

Fig. 14: Simulated iz1 of four techniques at M = 0.597

(a) 5th harmonic as function of M (b) 7th harmonic as function of
M

(c) WTHD as function of M (d) THD as function of M

Fig. 15: Experimental and simulated harmonic performances
for 0.577 < M ≤ 0.597

transformed domains, data-points of experimentally obtained
phase currents are saved in one excel file and subsequently,
transformation T is applied on these data-points in Matlab.
Currents in α − β plane is sinusoidal, as expected, due to
the balanced sinusoidal voltage application in this plane and
it validates the proposed strategy. The harmonic spectra of
both line-line voltage and phase currents for the experimental
and simulated waveforms are shown in Fig. 13i, 13k and 13j,
13l respectively where the presence of 5th and 7th harmonics
are prominent, as discussed in section V-B. The peaks of the
fundamental component of vab are 279.9 V and 283.5 V in
experimental and simulated results, which means, peak of line-
neutral voltages are 161.6 V and 163.7 V respectively. The
peaks of fundamental component of ia in experimental and
simulated waveforms are 12.4 A and 11.7 A respectively.

Table VI compares the simulation results of copper losses
incurred in z1 − z2 plane for all four techniques at afore-
mentioned five M using the machine parameters mentioned
in table IV. The proposed technique gives the lowest copper
loss among these four techniques at higher M which is close

(a) Open-loop V/f control: M = 0.448, fo = 45Hz
to M = 0.597, fo = 50Hz

(b) Computational time of the proposed strategy

Fig. 16: Dynamic performance of ASIM and computation time
of proposed strategy

(a) ωref , ωr , ia and vao.

(b) ωref , ωr , M and fs

Fig. 17: Simulated scalar-controlled closed-loop response of
ASIM



IEEE POWER ELECTRONICS REGULAR PAPER 14

to the copper loss of SVOVM4-2. As this copper loss is
related to current waveforms in z1 − z2 plane (copper loss
is equal to (i2z1,RMS + i2z2,RMS) × rs, where iz1,RMS and
iz2,RMS are RMS values of iz1 and iz2 , respectively, rs is
the resistance seen by the z1 − z2 plane), iz1 plot for all
four techniques at M = 0.597 are shown in Fig. 14 which
validate Table VI. The waveform of iz2 is similar to iz1
but phase-shifted by 90◦, therefore, iz2 plot is not shown
here. Fig. 15 compares the performance of the proposed
technique, as obtained through experiments and simulations,
over the range 0.577 < M ≤ 0.597 at five distinct M values.
Close agreements of THD, WTHD, 5th and 7th harmonic
performances between experimental and simulated waveforms
validates the proposed strategy. The difference between ana-
lytical and experimental WTHD, THD, 5th and 7th harmonic
estimation arises due to the clamping of the duty ratios of
the inverter switches at 0.975 (upper bound) and 0.025 (lower
bound) for proper dead-time operation between top and bottom
switches of a leg. 1.2 µs dead-time is used between top and
bottom switches of the inverter and if the switch ‘on’ time
is less than 5 µs, the switch is kept in ‘off’ state. When the
duty ratios have not been clamped in simulation (it is possible
as ideal switches are used in simulation), these performance
indices are closely matching with the analytical results.

C. Results with dynamics

Fig. 16a shows the dynamic performance of ASIM, driven
by V/f control, where M (brought out from the controller
through DAC), one of the line currents and computational time
pulse are captured in one scope. Computational time pulse is a
signal that is high when the calculation of PWM modulator is
in progress. During this experiment, M and output frequency,
fo, are changed from (0.448, 45 Hz) to (0.597, 50 Hz) in 1
sec. It can be seen that the line current was going through a
transient during the ramped increase in M , as expected, and
settled back to its original state once the dynamics is over. Fig.
16b shows the zoomed version of Fig. 16a over few sampling
cycles to show the computational time pulse. As expected, its
frequency is same as the sampling frequency (Fs = 1

Ts
=5

kHz), and computation time is 8 µs which is much smaller
than Ts=200 µs.

D. Closed-loop results

The closed-loop performances of scalar-controlled (V/f)
ASIM has been simulated in Matlab and shown in Fig. 17.
The plant model is similar to 3φ induction machine where
the steady-state torque is proportional to the slip speed.
Proportional-Integral (PI) controller is designed such that the

pole of the mechanical load is cancelled by the zero of the
controller and the rise-time of the resultant first order system
is 0.15 s. This choice of rise-time results into transient current
to be 150% of full load current, which is in the permissible
range, [32]. Fig. 17a shows the closed-loop speed, voltage
and current waveforms when there is step change of reference
speed from 258 rad/s to 289 rad/s. The change in synchronous
frequency, fs, and M are shown in Fig. 17b. (M , fs) pair are
changed from (0.5, 41.87 Hz), i.e. linear region, reach the peak
of (0.592, 49.58 Hz), i.e. overmodulation region, and finally
settled down to (0.564, 47.24 Hz).

VIII. CONCLUSIONS

This paper derives an important relationship between in-
dividual space-vectors of two three-phase inverters and the
space-vectors in α − β and z1 − z2 subspaces of six-phase
inverter. Using the above relation, an overmodulation (OVM)
technique is proposed which modulates two three-phase invert-
ers in order to synthesize the given reference voltage vector in
α−β subspace. According to proposed strategy, the reference
vectors of these two inverters are always phase shifted by
30◦. As usual, in linear region, their magnitudes are same
and equal to half of the magnitude of reference voltage vector
in α− β subspace. But in OVM region, their magnitudes are
different. The maximum modulation index achievable by this
technique is derived analytically and found to be 0.5977. This
technique doesn’t inject any harmonics in α − β subspace
and therefore no torque pulsation is created in ASIM. The
proposed technique covers 44.44 % of the entire OVM range.
Analytical closed form expression of harmonic components
of the line-neutral voltages is derived. The proposed strategy
injects n = 5, 7, 17, 19, ...12m ± 5 order harmonics in line-
neutral voltages. In OVM range, both THD and WTHD of the
line-neutral voltages are monotonically increasing functions
of modulation index and are 2.4 % and 0.42 % respectively
at maximum modulation index. Detailed comparisons of har-
monic performances of the proposed technique with other
existing techniques reveal that THD, WTHD performances
of the proposed technique is better than existing CSVPWM
and SVOVM4-1 techniques and almost similar to optimal
SVOVM4-2 whereas comparison of computational burdens
of the proposed technique with SVOVM4-2 shows that the
proposed technique can be implemented at much reduced
computational cost without involving complex six-dimensional
transformation. The proposed technique is validated through
experiments and simulation on 4.2 kW hardware prototype.

IX. APPENDIX

In linear region of operation (vαm ≤ 1), (26) are the expressions for modulation signals. Equations (27) and (28) give the
modulation signals of odd and even sectors, respectively, in overmodulation operation.

vao =
1
√

3
vα; va′o′ =

1

2
vα +

1

2
√

3
vβ ; vbo = −

1

2
√

3
vα +

1

2
vβ ; vb′o′ = −

1

2
vα +

1

2
√

3
vβ ; (26)
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vao =
2
√

3
vα +

(
2
√

3
sin ((k − 1)30◦)

)
y2m −

1
√

3
cos ((k − 1)30◦); va′o′ =

(
−

2
√

3
sin ((k − 2)30◦)

)
y2m +

1
√

3
cos ((k − 2)30◦);

vbo = −
1
√

3
vα + vβ −

(
2
√

3
sin ((k + 1)30◦)

)
y2m +

1
√

3
cos ((k + 1)30◦); vb′o′ =

(
2
√

3
sin (k30◦)

)
y2m −

1
√

3
cos (k30◦);

(27)

vao =

(
−

2
√

3
sin ((k − 1)30◦)

)
y2m +

1
√

3
cos ((k − 1)30◦); va′o′ = vα +

1
√

3
vβ +

(
2
√

3
sin ((k − 2)30◦)

)
y2m −

1
√

3
cos ((k − 2)30◦);

vbo =

(
2
√

3
sin ((k + 1)30◦)

)
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1
√

3
cos ((k + 1)30◦); vb′o′ = −vα +

1
√

3
vβ −

(
2
√

3
sin (k30◦)

)
y2m +

1
√

3
cos (k30◦);

(28)

vz1 =



(
1

cos δ
−

1

cos ( kπ
3
− θ)

)
cos θ;

(
kπ

3
− δ
)
≤ θ ≤

(
kπ

3
+ δ

)
 1

cos
(

(2k+1)π
6

− θ
) − 1

cos δ

 cos θ;

(
(2k + 1)π

6
− δ
)
≤ θ ≤

(
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6
+ δ

)
0; elsewhere

(29)

vz2 =
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cos ( kπ
3
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√
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]
(31)∫ δ
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2

3
sin (3δ)−
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∫ δ
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