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Abstract—Overmodulation techniques of asymmetrical
six-phase machine achieve higher DC-bus utilization by
applying voltage in non-energy transfer plane. This re-
sults into unwanted current and associated copper loss.
Existing overmodulation technique minimizes this voltage
from space-vector perspective with pre-defined set of four
active vectors. To find the best technique, one needs to
perform the above minimization problem with all possible
sets of active vectors with which higher voltage gain can
be attained. So, this requires evaluation of large number of
cases. This paper formulates the above minimization prob-
lem in terms of average voltage vectors of two three-phase
inverters, where active vectors need not to be specified
beforehand and thus the analysis is more general. Sixteen
possible techniques with different set of active vectors are
derived following the above analysis, which attain minimum
voltage injection in non-energy transfer plane. This paper
also identifies one of these sixteen techniques, which can
be implemented without involving complex six-dimensional
transformation. The above technique is validated through
experiments on six-phase induction motor and simulations
in Matlab at 3.5 kW power level.

Index Terms—Multiphase machines, pulse width modu-
lation (PWM), overmodulation, asymmetrical six-phase in-
duction motor, six-phase drives, harmonic minimization.

NOMENCLATURE

x Switching cycle average of variable x
vα + jvβ 3φ average voltage space-vector of Inverter-1.
v′α + jv′β 3φ average voltage space-vector of Inverter-2.
vα + jvβ 6φ average voltage space-vector in α−β plane.
vz1 + jvz2 6φ average voltage space-vector in z1 − z2.
~Vref Reference voltage vector in α− β
M Modulation index

I. INTRODUCTION

ASYMMETRICAL six-phase machine (ASPM), one of
the most popular multi-phase machines, has two sets of

balanced three-phase (3φ) windings which are spatially shifted
by 30◦ electrical, as shown in Fig. 1. This machine is attractive
in high power applications compared to 3φ due to better fault
tolerance for having more number of phases, reduced rating
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Fig. 1: Six-phase inverter fed ASPM

of per-phase power-electronic drive unit, less susceptibility
towards excitation harmonics, [1], [2].

To model ASPM with sinusoidal winding distribution, [3]
proposed a 6 × 6 orthonormal transformation matrix, T . T
transforms the six-dimensional quantities from original frame
to three two-dimensional orthogonal subspaces, as α − β,
z1 − z2 and o1 − o2, and the dynamic models of ASPM are
decoupled in these subspaces. α − β subspace is associated
with electromechanical energy transfer and therefore, this sub-
space should be excited with balanced fundamental voltage in
order to generate ripple-free torque in ASPM. The air-gap flux
doesn’t appear in other subspaces and hence torque remains
unaffected with the applied voltages in these subspaces. With
the balanced winding with two isolated neutrals, as shown
in Fig. 1, o1 − o2 plane can’t be excited. Although applied
voltage in z1 − z2 doesn’t create torque pulsation, it causes
large circulating current and associated copper loss due to low
impedance of the equivalent circuit. Therefore, applied voltage
in z1 − z2 should be as minimum as possible.

Linear modulation techniques of six-phase (6φ) inverter fed
ASPM don’t apply any average voltage in z1 − z2 subspace.
These techniques can be broadly classified into two categories:
space-vector based techniques (SVPWM) and two-inverter
(TINV) based techniques. In SVPWM techniques, desired
voltages in α−β and zero voltages in z1−z2 are synthesised by
the application of at least four active vectors and zero vectors.
SVPWM based linear modulation techniques with different
choice and number of active vectors and their performance
comparisons are presented in [3]–[10]. To avoid complex
implementation strategy of SVPWM based techniques, [11],
[12] modulate two 3φ inverters with reference voltage vectors
of equal magnitude at a phase difference of 30◦. The resulting
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techniques don’t apply any voltage in z1−z2 subspace. These
are labelled as TINV techniques in this paper. If modulation
index (M ) is defined as the ratio of peak of fundamental
line-neutral voltage and DC-bus voltage, the maximum M
attainable by both of these categories is 0.577.

Overmodulation (OVM) techniques apply a group of har-
monics in line-neutral voltages to attain 0.577 < M ≤ 0.622
so that these harmonics appear only in z1−z2 without affecting
fundamental operation in α − β. [13] proposed one such
technique, which is known as CSVPWM ( [3]), where desired
voltage vector in α − β was synthesised using two adjacent
active vectors. This resulted into large circulating current in
z1 − z2 plane, [3]. To minimize this, [6] had proposed two
space-vector based OVM (SVOVM) techniques, named as
SVOVM4-1 and SVOVM4-2 in this paper, which use two pairs
of active vectors adjacent to the reference voltage vector in
α − β without any zero-vector. Each pair consists of largest
and medium collinear vectors of α − β. With these vectors,
SVOVM4-2 formulated an optimization problem to achieve
minimum RMS voltage in z1 − z2 and it is the best known
technique among all existing OVM techniques of ASPM. It
should be mentioned here that OVM of symmetrical five-
phase machine with one isolated neutral also requires four-
dimensional modulation like ASPM, [14]–[18]. [14], [15]
proposed OVM technique of five-phase machine using similar
pairs of voltage vectors as [6]. [19] proposed TINV based
OVM techniques in which two 3φ inverters were operated
through OVM schemes of 3φ inverters, as proposed by [20],
in 30◦ phase difference. But, these techniques resulted into
injection of harmonics in α− β.

In SVPWM based voltage minimization technique, like
SVOVM4-2 of [6], the active vectors need to be decided
beforehand. As there are multiple ways of choosing these
active vectors, one needs to perform the minimization problem
for all such choices to find the best technique. In this context,
this paper makes following three contributions.

• The average voltage space-vectors of 6φ inverter in α−β
and z1 − z2 planes are expressed in terms of average
voltage space-vectors of two 3φ inverters. Then, the
aforementioned voltage minimization in z1−z2 is formu-
lated in terms of these 3φ average voltage vectors. Thus,
the problem formulation doesn’t require specification of
the active vectors beforehand and the analysis is more
general.

• Based on the above analysis, the whole OVM region is
divided into two parts. Optimal solution can be realized
by eight possible sets of switching states in one part and
two possible sets in another part. Combining these two,
sixteen possible techniques are obtained to attain optimal
solution. SVOVM4-2 is one such technique.

• Finally, this paper presents a two-inverter based opti-
mal OVM technique which can be implemented without
involving complex 6φ transformation and only requires
knowledge of 3φ inverter modulation.

The organization of the paper is as follows. Section II
briefly describe the modeling of 6φ machine and converter
and existing space-vector based OVM techniques. Section III

formulates the optimization problem to attain global minimum
voltage injection in z1 − z2 plane and section IV derives
few SVOVM techniques to attain this global minima. Finally,
carrier based implementation of one of the SVOVM techniques
with optimum harmonic voltage injection is discussed in
section-V and validated through experiments and simulations
in section VI. The paper has been concluded in section VII.

II. EXISTING OVERMODULATION TECHNIQUES OF
ASYMMETRICAL SIX-PHASE MACHINE

Fig. 1 shows the connection diagram of six stator phases of
asymmetrical six-phase machine (ASPM) with two-level 6φ
inverter. The 6φ inverter can be viewed as two 3φ inverters,
inverter-1 and inverter-2. The terminals of the six stator phase
windings are a, b, c, a′, b′, c′, which are directly connected
to the poles of the six legs of the inverter. These two sets
of balanced 3φ windings are connected in star fashion with
two isolated neutral points, o and o′, and these two sets are
spatially shifted by 30◦.

A. Machine Modeling
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T

Xj

Xi =
[
xα xβ xz1 xz2 xo1 xo2

]T
Xj =

[
xa xb xc xa′ xb′ xc′

]T
(1)

[3] has proposed a 6×6 orthonormal transformation matrix
T , as given in (1), to analyse the dynamic model of ASPM
in transformed domain, α − β − z1 − z2 − o1 − o2. The
vector quantities in (1) can be voltage, current or flux-linkage
etc. . Followings are few important properties of ASPM in
transformed domain.
1) The transformed six dimensions are orthogonal to each

other and can be grouped as three two-dimensional sub-
spaces, viz., α − β, z1 − z2 and o1 − o2, respectively.
Dynamic equivalent circuits of ASPM in these subspaces
are decoupled to each other.

2) The coupling of flux-linkages and currents between stator
and rotor is seen only in α−β subspace. Both the dynam-
ical and steady-state equivalent circuits in this subspace
are similar to the equivalent circuits of 3φ machine with
3φ Clarke’s transformation. This is the only subspace as-
sociated with electromechanical energy transfer and hence
α− β plane should be excited with balanced fundamental
voltage so as to rotate the ASPM without any torque ripple.

3) The dynamic and steady-state equivalent circuits in z1−z2

and o1 − o2 subspaces consist of winding resistance and
leakage inductance. These subspaces are not associated
with electromechanical energy transfer. Although these
subspaces don’t create any torque pulsation, injection of
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TABLE I: Switching States of Three-phase Inverter

Switching State Label Switching State Label
000 0 011 4
100 1 001 5
110 2 101 6
010 3 111 7

voltages in these subspaces should be low to reduce the
RMS current and associated loss in these subspaces. For
two isolated neutrals (as shown in Fig. 1), io1 , io2 in
(1), corresponding to line currents, are zero. So, vo1 , vo2 ,
corresponding to line-neutral voltages, for balanced six-
phase windings will be always zero for any of the switching
states of the inverter. Therefore, discussion of modulation
in o1 − o2 subspace is omitted in subsequent sections.

B. Converter Modeling
As each of the two-level 3φ inverters has 8 permissible

switching states, 6φ inverter of Fig. 1 has 8×8 = 64 switching
states. These states are labelled by using two numbers, like
(x, y′), where x, y′ denote the switching states of inverter-1
and inverter-2, respectively, and x, y ∈ {0, 1...7}. Table I lists
8 switching states of 3φ inverter. Each entry under ‘Switching
State’ column has three binary digits which denote the switch-
ing states of top switches of a, b, and c legs, respectively, of
a 3φ inverter. Here, 0 represents ‘off’ and 1 represents ‘on’.
The bottom switch of any leg is complementary switched with
respect to top switch. Therefore, 101 state implies top switches
of a and c legs and bottom switch of b legs are in ‘on’ state.
So, switching state (1, 6′) of 6φ inverter means top switches
of a, a′, c′ and bottom switches of b, c, b′ are ‘on’; other
switches are ‘off’.

The line-neutral voltages generated by each of the switching
states can be mapped into transformed domain by applying
T of (1). For example, line-neutral voltage vector in original
domain, Vj in (1), generated by state (1, 6′) is given as,
Vj |(1,6′) = VDC

3

[
2 −1 −1 1 −2 1

]T
. The corre-

sponding mapping in transformed domain, Vi, is obtained by
applying T on Vj . Combining α − β and z1 − z2 voltages
together, we get, (vα + jvβ)|(1,6′) = 2VDC cos 15◦√

3
e−j15◦ and

(vz1 + jvz2)|(1,6′) = 2VDC cos 75◦√
3

e−j75◦ . Similarly, 64 states
can be mapped in transformed domain. It gives 60 active
vectors (48 distinct vectors) and 4 zero vectors in both α− β
and z1 − z2. The mapping of these 64 states can be referred
from [3]. The tips of 12 largest active vectors in α−β form a
do-decagon. α−β plane within this do-decagon can be divided
in 12 equivalent sectors. Fig. 2 shows the mapping of those 16
states in α− β and z1 − z2 which are required to explain the
space-vector based overmodulation (OVM) techniques with
reference voltage vector, ~Vref , within sector-1 of α−β plane.
~Vref is defined as ~Vref =∆ vα+jvβ ; bar represents the average
value over a switching cycle. Among these 16 states, 4 are
zero states and they are denoted by (z, z′), where z ∈ {0, 7}.
Remaining 12 states give 9 distinct active vectors, shown in
Fig. 2, as two zero states of one 3φ inverter in combination
with one active state of other 3φ inverter give rise to same
vector in both α − β and z1 − z2 planes. Therefore, each of
the active vectors among (z, 1′), (1, z′) and (z, 6′) in Fig. 2

(a) α− β plane (b) z1 − z2 plane

Fig. 2: Mapping of 16 neighbouring switching states of sector-
1 results into 10 distinct vectors

is the resultant of two states. The boundary of the do-decagon
is shown by the dotted line in Fig. 2a and 12th, 1st and 2nd

sectors are indicated in the figure.
In this paper, modulation index (M ) is defined as the ratio

of peak of the fundamental line-neutral voltage and DC-bus
voltage. OVM techniques are referred to those techniques
which don’t apply any harmonic voltage in α−β but do apply
harmonic voltages in z1− z2 plane in order to achieve higher
M . It is well-known in ASPM literature that linear techniques
attain M up to 0.577 whereas OVM techniques can achieve M
up to 0.622. What follows is the brief discussion on existing
OVM techniques of ASPM and their limitations.

C. Existing SVOVM techniques of ASPM and its limita-
tions

Suppose, we want to synthesize ~Vref in sector-1 of α − β
plane, as shown in Fig. 2. Existing two-vector based SVOVM
technique of [13], later named as CSVPWM in [3], uses
two large active vectors adjacent to ~Vref , like (1, 6′), (1, 1′)
and zero-vector. Harmonic voltage injected by CSVPWM in
z1 − z2 plane is significant, [3]. [6] has proposed two OVM
techniques, which are termed as SVOVM4-1 (space-vector
based OVM technique using 4 active vectors) and SVOVM4-2
in this paper, in order to reduce harmonic voltage injection in
z1 − z2 plane. It uses 2 large and 2 medium vectors adjacent
to ~Vref , like (6, 1′), (1, 6′), (2, 6′) and (1, 1′) in sector-1.
With this four vectors, SVOVM4-2 minimizes average voltage
injected in z1− z2 plane, v2

z1 + v2
z2 . Similar OVM techniques

for five-phase drives were proposed by [14]–[16]. Suppose,
the minimal voltage injection in z1 − z2 plane obtained by
SVOVM4-2 is denoted as |vz1 + jvz2 |∗2L+2M .

Let us consider an alternative 4 vector strategy, that applies
2 large, 1 medium and 1 small vectors adjacent to ~Vref in
sector-1 of α − β plane: (1, z′), (1, 1′), (1, 6′) and (2, 6′).
For this particular choice of vectors, we can find the optimal
modulation strategy following the similar analysis as outlined
in [6] and suppose the optimal voltage is denoted by |vz1 +
jvz2 |∗2L+1M+1S . We observed that |vz1 + jvz2 |∗2L+1M+1S ≥
|vz1 + jvz2 |∗2L+2M for all possible ~Vref in overmodulation
region of upper-half of sector-1. But, if (z, 1′) is used instead
of (1, z′) (where both (z, 1′) and (1, z′) are small vectors
adjacent to ~Vref in sector-1) keeping other three vectors
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same, the optimal solution obtained by that set is same as
|vz1 + jvz2 |∗2L+2M .

The above example clearly establishes following facts: 1)
There are more than one set of vectors that can be used
to synthesize a reference voltage vector in α − β plane in
overmodulation. 2) Following the procedure outlined in [6],
one can find the duty ratios of this specific set of vectors
that will minimize the length of the average applied vector in
z1− z2 plane 3) This minimum length depends on the choice
of the set of vectors. So, for a given reference voltage vector
in overmodulation region, unless we compute the minimum
lengths of the average voltage vectors in z1 − z2 plane by
every possible techniques, we do not know a) SVOVM4-2 in
[6] is the technique that attains smallest among all minimum
lengths of the average voltage vectors in z1 − z2 plane (we
can call it global minimum), b) even if that is true, are there
techniques other than SVOVM4-2 in [6] that also achieves the
same global minimum. In order to find the best strategy, one
needs to do the following: a) Determine all possible sets of
adjacent vectors for a given ~Vref ; b) Perform the minimization
problem, as outlined in [6], for each of these sets of vectors;
c) Identify which choice results in minimum among all of
the optimal lengths of the applied average voltage vector in
z1−z2 plane. With large number of such choices, it is difficult
to follow the procedure outlined above.

To find the best technique(s), that results in global minimum
length of the applied average voltage vector in z1 − z2 plane
in overmodulation region, a general method is presented in
section-III which doesn’t require to decide the switching states
beforehand.

III. MINIMIZATION OF HARMONIC INJECTION IN
OVERMODULATION

A. Expressing 6φ space-vectors in terms of 3φ space-
vectors

Equation (2a) and (2b) apply the standard 3φ−3φ Clarke’s
transformation C on the line-neutral voltages of two 3φ
inverters. Here, the prime denotes the quantities related to
second inverter. One should note here that α − β is 3φ
transformed domain and different from 6φ α−β. With (1), (2a)
and (2b), the average voltage vectors in α − β and z1 − z2

planes can be written as the linear combination of average
voltage vectors of two three-phase inverters, as shown in (3).
Here, ∗ denotes conjugate operation. According to 3φ inverter
literature, vα + jvβ and v′α + jv′β are the average voltage
space-vectors of the inverter-1 and inverter-2, respectively.
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]T
(2b)

Fig. 3: Voltage vectors of three-phase inverter

~Vref =∆ vα + jvβ =
(
vα + jvβ

)
︸ ︷︷ ︸

x1+jy1

+
(
v′α + jv′β

)
ej30◦︸ ︷︷ ︸

x2+jy2

=(x1 + x2) + j(y1 + y2)

(3a)

vz1 + jvz2 =

(vα + jvβ

)
︸ ︷︷ ︸

x1+jy1

−
(
v′α + jv′β

)
ej30◦︸ ︷︷ ︸

x2+jy2


∗

= (x1 − x2)− j(y1 − y2)

(3b)

B. Objective function, equality and inequality constraints

To minimize the applied RMS voltage in z1 − z2 plane,
applied average voltage vector length over each switching
cycle needs to be minimized. Therefore, (4) is the objective
function which can be derived from (3b). As we want to
minimize this objective function for the given vα and vβ ,
the real and imaginary parts of (3a), i.e., x1 + x2 = vα and
y1 + y2 = vβ , are two equality constraints in this problem.

|vz1 + jvz2 |2 = (x1 − x2)2 + (y1 − y2)2 (4)

Fig. 3 shows the mapping of line-neutral voltages generated
by 8 switching states (2 zero states and 6 active states) of
two-level 3φ inverter into α−β in accordance with (2a). Due
to balanced load with isolated neutral configuration, voltage
generated by these states in o plane is zero. By joining the tips
of 6 active vectors, a regular hexagon is obtained with length
of each side equal to VDC√

3
. The duty ratios of the six switches

of 3φ inverter should be between 0 to 1 and summation of all
the duty ratios, corresponding to the switching states applied
within a switching cycle, should be equal to 1. With these duty-
ratio constraints, the average voltage space-vectors generated
by individual 3φ inverter, vα+jvβ and v′α+jv′β , will lie within

this regular hexagon. As x1 +jy1 =∆ vα+jvβ , x1 +jy1 ∈ B1,
where B1 is same as hexagon of Fig. 3. As x2 + jy2 =∆ (v′α+

jv′β)ej30◦ , x2+jy2 ∈ B2, where B2 is obtained by rotating the
hexagon of Fig. 3 by 30◦ in anti-clockwise direction. In Fig.
4, B1 and B2 are shown in black and red colours; lengths are
normalized with respect to VDC . These boundaries of x1+jy1

and x2 + jy2 are the inequality constraints in this problem
which are arising due to duty-ratio constraints of the switches
of 6φ inverter.
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Fig. 4: B1, B2, D1 and D2

C. Identification of overmodulation region

With the constraints (x1 + jy1) ∈ B1 and (x2 + jy2) ∈ B2,
(3a) gives us all possible vα+jvβ which lie within do-decagon
D1 of Fig. 4. D1 is same as the do-decagon in α−β plane of
Fig. 2. In linear modulation range, vz1 = vz2 = 0. According
to (3b), the only way to achieve this is by applying x1 = x2

and y1 = y2, which implies x1 + jy1 = x2 + jy2. With this
constraint, the maximum boundary of x1 + jy1 (or x2 + jy2)
takes the shape of a do-decagon which is shown by the dotted
blue line in Fig. 4. Summation of the voltage vectors, x1 +jy1

and x2+jy2, along this blue line gives the mapping of vα+jvβ
in linear region (according to (3a)) and is shown by the do-
decagon D2 in Fig. 4. Therefore, region between D1 and D2

is the region of OVM of ASPM.
Due to structural symmetry of D1, whole α− β plane can

be divided in 12 equivalent sectors, as shown in Fig. 4. Hence,
modulation of 6φ drive will be discussed only for sector-1 and
modulation of the remaining sectors will be similar to sector-
1. Moreover, B1, B2, D1 and D2 are symmetric with respect
to real axis. Therefore, discussion of modulation is further
restricted to upper half of sector-1 and zoomed version of this
part is shown separately in Fig. 5.

D. Minimization in OVM region of upper-half of sector-1

AB, CD, JI and HG in Fig. 5 are parts of B1, B2, D2 and
D1, respectively. ∠OBA = ∠OCD = 60◦, ∠COD = 30◦ (as
B2 is rotated by 30◦), ∴ ∠ODC = 90◦. As OB = OC = 1√

3
,

OD = OC cos 30◦ = 1
2 . For vα + jvβ =∆ ~Vref lying within

∆OHG, we will argue that x1 + jy1 ∈ ∆OAB and x2 +
jy2 ∈ ∆OCD. ∆OHG consists of two regions- linear region,
∆OJI , and OVM region, �IJHG. Therefore, we want to
determine x1 +jy1 and x2 +jy2 when tip of ~Vref ∈ �IJHG.

For tip of ~Vref ∈ �IJHG, it is possible to show that two
inequality constraints out of six (three boundaries of each of
∆OAB and ∆OCD) become active, viz., x1 + jy1 is in that
side of AB where origin, O, is there and x2 +jy2 is in the left
side of CD. Equation of straight line AB, which makes an
intercept of 1√

3
along X with a slope of tan 120◦, is

√
3X +

Y = 1. Equation of CD is X = 1
2 . Therefore, active inequality

constraints are as follows.
√

3x1 + y1 ≤ 1 (5a) x2 ≤
1

2
(5b)

1) Four variables to two variables problem: Substituting
x2 and y2 from the two equality constraints in objective
function, (4), and two active inequality constraints, (5a) and
(5b), the minimization problem becomes as (6), where vα
and vβ appear as parameters. This optimization problem boils
down to determine a point within the feasible region, defined
by the inequality constraints of (6), in x1 − y1 plane so that
the distance between that point and the point with co-ordinates
(vα2 ,

vβ
2 ) is minimized.

min√
3x1+y1≤1
x1≥vα− 1

2

(
x1 −

vα
2

)2

+

(
y1 −

vβ
2

)2

︸ ︷︷ ︸
(vα+jvβ)∈�IJHG

(6)

2) Inequality constraints and search space for optimal
solution in x1−y1 plane: Fig. 6 helps to visualize this problem
geometrically in x1 − y1 plane. The boundary of the first
inequality constraint of (6), i.e.,

√
3x1 + y1 ≤ 1, is shown by

AB. The boundary of the second inequality constraint, i.e.,
x1 ≥ vα− 1

2 , is shown by RS. The x1-intercept of RS varies
as vα changes. The regions in x1−y1 plane, which satisfy the
above two inequality constraints, are shown by double-lined
arrows on AB and RS. AB and RS intersect each other at E′.
Therefore, ∆E′SB (shaded region) in Fig. 6, intersection of
the above two regions, is the feasible search space for optimal
solution.

3) Modified minimization problem in x1 − y1 plane: As
discussed earlier, solving the minimization problem of (6)
is equivalent to determine a point within ∆E′SB so that
distance between that point and the point with co-ordinates
(vα2 ,

vβ
2 ), suppose P , is minimized. As the co-ordinates of

both E′S boundary of feasible search space and the point P
are functions of vα and vβ , we will try to trace E′S and P
for all possible (vα + jvβ) ∈ �IJHG. The OVM region,
�IJHG, can be identified by checking (7).

C1 : vα − 1 > 0 (7)

Any point within �IJHG of Fig. 5 has vα and vβ in the
following range- 1 ≤ vα ≤ 1

2 + 1√
3

and 0 ≤ vβ ≤ vα tan 15◦,
for the corresponding vα. Therefore, 1

2 = OD ≤ vα − 1
2 =

OS ≤ 1√
3

= OB is true for all possible (vα, vβ) within
�IJHG. Let us consider a line KL parallel to Y -axis within
�IJHG such that KL intersects OH and OG at K and L,
respectively, in Fig. 5. By varying KL from JI to HG, we
can trace each point within �IJHG. Suppose, we want to
solve the optimization problem for a point (vα, vβ) lying on
the line KL. Corresponding ( vα2 ,

vβ
2 ) will be on K ′L′ line in

Fig. 6, where OL′ = vα
2 . As K ′L′ = OL′ tan 15◦, K ′ will

be on the line OE. As vα ≥ 1 for any point within �IJHG,
1
2 = OD ≤ vα

2 = OL′ ≤ vα− 1
2 = OS. Therefore, K ′L′ will

always be in the left-hand side of RS and right-hand side of
ED for (vα + jvβ) ∈ �IJHG.

Let, the line drawn from point E′ parallel to x1 axis
intersects K ′L′ at E′′. The y1 coordinate of E′ or E′′ can
be determined by solving the equations of the lines AB and
RS, which gives E′S = E′′L′ = (1+

√
3

2 )−
√

3vα. Depending
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Fig. 5: Zoomed upper half of sector-1 Fig. 6: Problem in x1 − y1 plane Fig. 7: Four sub-sectors in sector-1

upon the position of the point with co-ordinates ( vα2 ,
vβ
2 ) on

K ′L′, two cases may arise.
OVM-Case-1: The point lie on E′′L′ =⇒ vβ

2 ≤ E
′′L′

P1 is such a point in Fig. 6. As shown in Fig. 6, Q is the
point which is at minimum distance from P1 within feasible
region E′SB. Therefore, optimal solution, x∗1,2 and y∗1,2, are
given in (8). With these solutions, optimum z1 − z2 plane
voltages can be determined from (3b) and are given in (8). The
condition vβ

2 ≤ E
′′L′ is equivalent to (9). Equation of the line

passing through G and J in Fig. 5 is
√

3X + Y
2 = (1 +

√
3

2 )
(shown by dotted line). Therefore, this case arises when tip of
~Vref lies within ∆IGJ of Fig. 5.

x∗1 = vα −
1

2
; y∗1 =

vβ
2

; x∗2 =
1

2
; y∗2 =

vβ
2

v∗z1 = vα − 1; v∗z2 = 0
(8)

C2 :
vβ
2
≤ (1 +

√
3

2
)−
√

3vα =⇒
√

3vα +
vβ
2
≤ (1 +

√
3

2
)

(9)

x∗1 = vα −
1

2
; y∗1 = (1 +

√
3

2
)−
√

3vα

x∗2 =
1

2
; y∗2 =

√
3vα + vβ − (1 +

√
3

2
)

v∗z1 = vα − 1; v∗z2 = 2
√

3vα + vβ − (2 +
√

3)

(10)

OVM-Case-2: The point lie on K ′E′′ =⇒
√

3vα +
vβ
2 >

(1 +
√

3
2 ) =⇒ tip of ~Vref ∈ ∆GHJ of Fig. 5.

P2 is such a point in Fig. 6. In this case, E′ is the closest
point from ( vα2 ,

vβ
2 ) within the feasible region. The optimal

solution in this case is given in (10).
E. Minimization in OVM region of lower-half of sector-1

Similar to upper-half of sector-1, the optimal solution for
OVM region of lower half of sector-1 can be determined. Fig.
7 shows the four overmodulation regions in sector-1 where
OVM-Case-1 and OVM-Case-2 in upper-half and lower-
half are denoted by 1U , 2U and 1L, 2L, respectively. The
inequality through which 2L is differentiated from 1L is given
in (11). The optimal solution in 1L is same as (10) whereas
optimal solution in 2L is given by (12).

C3 :
√

3vα −
vβ
2
> (1 +

√
3

2
) (11)

x∗1 = vα −
1

2
; y∗1 =

√
3vα − (1 +

√
3

2
)

x∗2 =
1

2
; y∗2 = −

√
3vα + vβ + (1 +

√
3

2
)

v∗z1 = vα − 1; v∗z2 = −2
√

3vα + vβ + (2 +
√

3)

(12)

As discussed before, the optimal solution in linear region,
i.e., when vα ≤ 1 or tip of ~Vref ∈ ∆OIJ of Fig. 5, can be
determined by plugging vz1 = vz2 = 0 in (3) and given below.

x∗1 = x∗2 =
vα
2

; y∗1 = y∗2 =
vβ
2

(13)

It should be noted here that optimum vz1 and vz2 , as given
in (8), (10) and (12), are similar to the optimum solution
obtained by SVOVM4-2 in [6] (refer equations (27), (34) and
(36) of [6]). The constant terms differ due to different scaling
factor in the transformation matrix T . Therefore, SVOVM4-2
is one of the ways to achieve the global minima of harmonic
voltage injection. There are few more ways to attain the
optimal technique, which are discussed in the next section.

IV. OPTIMAL SVOVM TECHNIQUES

The optimal SVOVM techniques of the aforementioned two
OVM cases in upper-half of sector-1 are derived in this section
based on the analysis of the previous section. During selection
of switching sequences, simultaneous switching of two legs of
the 6φ inverter and active-vector splitting are not accounted.

A. Switching Sequences for OVM-Case-1
1) Individual inverter state identification: (8) gives the

optimal solution for this case. As x∗2 = 1
2 , (v′α + jv′β)ej30◦ =

x2 + jy2 lies on line DC of Fig. 5 or v′α + jv′β lies on the
side of the hexagon of Fig. 3 which is obtained by joining
states 1 and 6. Therefore, inverter-2 has to apply states 1′ and
6′ and summation of the duty ratios, for which these states
are applied, is 1, i.e., d1′ + d6′ = 1. In (8),

√
3x1 + y1 < 1.

As vα = x1 and vβ = y1, according to (3a),
√

3vα + vβ < 1.
This implies vα + jvβ ∈ ∆OAB in Fig. 5. We know that
any vector within 30◦ of sector-I of hexagon of Fig. 3 can
be realized by using either {6, 1, 2} states or {z, 1, 2} states;
where z is zero state and z ∈ {0, 7}. Therefore, both {6, 1, 2}
or {z, 1, 2} are possible states of inverter-1 to realize (8).

2) 6φ inverter state identification and sequence design: It
can be shown that d1 ≥ d1′ ≥ d6′ ≥ (d2 +d6/z) is true in this
case. Fig. 8a and 8b show the possible states and sequences to
achieve the optimal solution when inverter-1 applies {6, 1, 2}
and {z, 1, 2}, respectively. Position of 1′ and 6′ have been kept
fixed and relative positions of states of inverter-1 are changed
in this figure. Fig. 8b is further split into 3 cases depending on
applied zero state: 0, 7 and both 0 and 7 are applied in cases
b1, b2 and b3. Table II tabulates the states and sequences
generated by different cases of Fig. 8. The switching signal
waveforms are symmetric over the sampling period, Ts. It can
be seen from table II that both four and five active vectors
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Fig. 8: Possible switching states of six-phase inverter in
overmodulation. (a) OVM-Case-1 (1U ) and inverter-1 ap-
plies {6, 1, 2}. (b) OVM-Case-1 (1U ) and inverter-1 applies
{z, 1, 2}. (c) OVM-Case-2 (2U ).

can be used to attain optimal solution. Therefore, 8 possible
sequences are derived in this case.

B. Switching Sequences for OVM-Case-2
1) Individual inverter state identification: The optimal so-

lution in (10) satisfies
√

3x1 + y1 = 1 and x2 = 1
2 . Therefore,

vα + jvβ lies on line AB of Fig. 5. As AB is part of the
side of the hexagon of Fig. 3, obtained by joining states 1 and
2, therefore (10) can only be realized with states 1 and 2 of
inverter-1 with d1 + d2 = 1 Inverter-2 will apply states 6 and
1, as before.

2) 6φ inverter state identification and sequence design: It
is possible to show that d1 ≥ d1′ ≥ d6′ ≥ d2 holds in this
case. Fig. 8c shows possible 2 sequences where only 3 vectors
can be used. Table II lists these sequences.

C. Derivation of optimal Techniques
Combining the above 8 possible sequences for OVM-Case-

1 and 2 sequences for OVM-Case-2, one can have 16 optimal
PWM techniques in the whole OVM region.

Existing SVOVM4-2 uses case a-I in ∆IGJ and case c-
I in ∆GJH . A carrier comparison based implementation of
this optimal technique is discussed in the next section which
results into sequence b3-I in ∆IGJ (2 large, 1 medium and 2
small (2L+1M+2S) active vectors in α− β) and c-I (2 large,
1 medium (2L+1M) vectors) in ∆GJH . Although all of the
techniques of table II inject optimal low-frequency voltages
in z1 − z2 plane, their high-frequency performances, like,
current ripple, flux ripple are expected to differ similar to linear
techniques of ASPM. Similar to sector-1, the optimal solutions
and sequence of active vectors for other sectors of do-decagon
D1 of Fig. 4 can be derived.

D. Average switching frequency in OVM region
Let, the average commutation over one Ts = 1

Fs
is defined

as the ratio of number of legs switch over one Ts and total
number of legs (it is 6 for 6φ inverter). Table II lists the
average commutation of different techniques in OVM. For
0.577 < M ≤ 0.5977, circular ~Vref =

√
3Mejωot lies in

1U for 0◦ ≤ ωot ≤ γ(M) = cos−1 1√
3M

and in linear region

for γ(M) < ωot ≤ 15◦ in upper-half of sector-1 and ~Vref
never enters in 2U , as shown in Fig. 7 with M = M1.
For 0.5977 < M ≤ 0.622, circular ~Vref lies in 1U for
0◦ ≤ ωot ≤ δ(M) = sin−1 ( 2+

√
3√

39M
) − tan−1(2

√
3) and in

2U for δ(M) < ωot ≤ 15◦ in upper-half of sector-1 and it
never enters in linear region in this modulation index range,
as shown in Fig. 7 with M = M2. If conventional SVPWM
technique is adopted per 3φ inverters in linear region where

Fig. 9: Fsw
Fs

as function of M

all legs switches, average commutation in linear region is 1.
Therefore, average switching frequency, Fsw, of 6φ inverter
over 15◦ for 0.577 < M ≤ 0.5977 is given by (14) and
for 0.5977 < M ≤ 0.622 is given by (15). As modulation
over 360◦ is symmetrical for all 6 legs, the average switching
frequency over fundamental period is same as (14) and (15).
Fig. 9 plots Fsw

Fs
as function of M for 0.577 ≤ M ≤ 0.622.

Based on the technique used when tip of ~Vref lie in 1U , either
a/b1/b2 or b3 (average commutation is 1

2 or 2
3 ), two plots are

given.

Fsw = Fs
(15◦ − γ(M))× 1 + γ(M))× ( 1

2 or 2
3 )

15◦
(14)

Fsw = Fs
(15◦ − δ(M))× 1

3 + δ(M)× ( 1
2 or 2

3 )

15◦
(15)

V. CARRIER-COMPARISON BASED IMPLEMENTATION OF
OPTIMAL TECHNIQUE

Following steps are followed in order to determine the six
duty-ratios of top six switches of 6φ inverter from the given
vα, vβ .

Step-1 Sector Identification: Find k, so that 30◦k−45◦ ≤
∠(vα + jvβ) ≤ 30◦k − 15◦

Step-2 Determination of voltages in modulo-sector: Find
vαm + jvβm = (vα + jvβ)e−j(k−1)30◦ .

Step-3 Sub-sector Identification: Use conditions C1, C2,
and C3 of section-III to determine if the modulo vector lies
in linear, 2U , 2L or 1U /1L.

Step-4 Determination of optimal solution: Using (13)
(linear), (8) (1U and 1L), (10) (2U ) and (12) (2L), find optimal
x1, y1, x2 and y2. If k is odd, x1m + jy1m = x1 + jy1;
x2m+jy2m = x2 +jy2. If k is even, x1m+jy1m = x2 +jy2;
x2m + jy2m = x1 + jy1.

Step-5 Determination of optimal space-vectors: The
space-vectors corresponding to kth sector can be found as,
(vα + jvβ) =∆ (x1 + jy1) = (x1m + jy1m)ej(k−1)30◦ ;
(v′α + jv′β) = (x2m + jy2m)ej(k−2)30◦ .

Step-6 Calculation of modulation signals: Using inverse
Clarke’s transformation of (2), vao, vbo,...vc′o′ can be deter-
mined.

Step-7 Calculation of Six duty ratios: Duty ratios of the
top switches of six legs, da, db...dc′ , can be calculated by
adopting conventional SVPWM technique per 3φ inverters
where 1

2 + mid
2 common-mode signals to individual 3φ in-

verters are injected. This results into application of two zero
states (0 and 7 in Table I) for equal duration of time.

14 comparisons, 18 additions and 17 multiplications are
required to follow the above steps. As Inverter-1 applies both
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TABLE II: Optimal Sequences in OVM (Tip of ~Vref ∈ �IJHG)

OVM Zone Case Switching sequence over Ts Vector type Avg. commutation over Ts

1U

a-I (6, 1′)− (1, 1′)− (1, 6′)− (2, 6′)− (1, 6′)− (1, 1′)− (6, 1′) 2L+2M

1
2

a-II (2, 1′)− (1, 1′)− (1, 6′)− (6, 6′)− (1, 6′)− (1, 1′)− (2, 1′) 4L
b1-I (0, 1′)− (1, 1′)− (1, 6′)− (2, 6′)− (1, 6′)− (1, 1′)− (0, 1′) 2L+1M+1S
b1-II (2, 1′)− (1, 1′)− (1, 6′)− (0, 6′)− (1, 6′)− (1, 1′)− (2, 1′) 3L+1S
b2-I (7, 1′)− (2, 1′)− (1, 1′)− (1, 6′)− (1, 1′)− (2, 1′)− (7, 1′) 3L+1S
b2-II (1, 1′)− (1, 6′)− (2, 6′)− (7, 6′)− (2, 6′)− (1, 6′)− (1, 1′) 2L+1M+1S
b3-I (0, 1′)− (1, 1′)− (1, 6′)− (2, 6′)− (7, 6′)− (2, 6′)− (1, 6′)− (1, 1′)− (0, 1′) 2L+1M+2S 2

3b3-II (7, 1′)− (2, 1′)− (1, 1′)− (1, 6′)− (0, 6′)− (1, 6′)− (1, 1′)− (2, 1′)− (7, 1′) 3L+2S

2U
c-I (1, 1′)− (1, 6′)− (2, 6′)− (1, 6′)− (1, 1′) 2L+1M 1

3c-II (2, 1′)− (1, 1′)− (1, 6′)− (1, 1′)− (2, 1′) 3L

(a) (b)

Fig. 10: Experimental set-up. (a) Six-phase inverter and con-
troller. (b) ASPM coupled with DC generator.

TABLE III: Steady-state Circuit Parameters of 6φ IM

Per phase stator and rotor resistances (rs, rr) 0.675 Ω
Per phase stator and rotor leakage inductances (Lls, Llr) 3.75 mH

Per phase self-inductance of stator and rotor (Ls, Lr) 0.172 H
Per phase mutual inductance (LM = Ls − Lls ) 0.168 H

zero states (0 and 7) equally and Inverter-2 doesn’t apply any
zero state as the dwell time of zero-state is zero, it results into
b3-I in 1U . In 2U , dwell times of zero-states of both of the
inverters are zero. But, as all the duty signals are compared
with same triangular carrier, it results into c-I.

VI. EXPERIMENTAL AND SIMULATION RESULTS

To validate the proposed optimal technique experimentally,
asymmetrical squirrel-cage 6φ induction motor (IM) is chosen
as the 6φ machine. The specification of ASPM is 5 kW, 2
pole, 120 V line-neutral RMS in 6φ configuration, 50 Hz.
This machine is coupled with 5 kW DC generator which acts
as load. The six phases are fed from two 3φ inverters which are
built with 1200 V, 75 A SEMIKRON IGBT (SKM75GB123D)
module. The controller card consists of Zynq-7010 IC, which
has both processing system and programmable hardware, and
customized interface card to generate PWM signals for the
switches. The experimental set-up is shown in Fig. 10. Table
III tabulates the steady-state equivalent circuit parameters of
6φ-IM, where winding resistance and leakage inductance of
per-phase stator equivalent circuit in α−β and z1− z2 are rs
and Lls, respectively; mutual inductance, LM , only appears in
α−β. Using these parameters, dynamic model of the machine
is implemented in Matlab Simulink to verify the proposed
technique through simulation.

TABLE IV: Operating Conditions of Experiments and Simu-
lations

Peak fundamental line-neutral voltage (Vo) 120
√

2 V
Fundamental frequency (fo) 50 Hz

Output power 3.5 kW
Switching frequency 5 kHz

Experiments and simulations are performed at eleven val-
ues of M within 0.577 ≤ M ≤ 0.622. Table IV shows
the operating condition for each of these experiments. As
Vo = MVDC = 120

√
2 V, VDC is changed with M in

order to keep Vo and fo constant for all M , although it
is customary to keep VDC constant and change fo with
M accordingly. Fig. 11 shows experimental and simulated
waveforms of proposed technique. Fig. 11a and 11d show
the experimental and simulated waveforms of ia and ia′ ,
respectively, at M = 0.612 which are at a phase difference of
30◦. Similarly, 30◦ phase-shifted line-line voltage waveforms,
vab and va′b′ , are shown in Fig. 11c and 11f. 3φ currents of
one of the inverters are shown in Fig. 11b and 11e. They are
at 120◦ phase difference to each other. The 3φ currents of
the other inverter are also similar and they are at 30◦ phase
difference to these set of 3φ currents. The experimental line
currents and line-line voltages at the maximum boundaries of
linear and OVM region, i.e., at M = 0.577 and M = 0.622
are shown in Fig. 11g, 11j and 11h, 11k, respectively. The
line currents are sinusoidal in Fig. 11g. Fig. 11i shows
experimental iα and iβ at M = 0.622 which are sinusoidal,
although low-frequency harmonics are present in line-currents.
From line-line voltage waveforms at three modulation indices,
it is clear that switching frequency decreases as M increases.
The harmonic spectrum of experimental and simulated line-
line voltages and phase currents at M = 0.612 are shown
in Fig. 11m, 11n, 11o and 11p. The optimal technique injects
12k±5 harmonics in z1−z2 plane and 5th and 7th harmonics
among them are prominent. The peak of fundamental, 5th and
7th harmonic components of line-line voltages, as obtained
from experiment and simulation, are 285.3 V, 24.1 V, 6.5 V
and 281.1 V, 23 V, 4.2 V, respectively, at M = 0.612. The
peak of fundamental, 5th and 7th harmonic components of
experimental and simulated phase currents are 7.9 A, 2.2 A,
0.1 A and 8.1 A, 2.2 A, 0.3 A, respectively. Simulated polar-
plot of v∗z1 + jv∗z2 of proposed technique, normalized with
VDC , is plotted in Fig. 11l for M = 0.612 and M = 0.622.
At M = 0.577, this is zero. Fig. 11q shows the pole voltages,
vxN , for OVM region 1U . Here, x = a, b, c, a′, b′, c′ and N
is negative DC-bus, as shown in Fig. 1. Fig. 11q indicates
the switching sequence used by TINVOVM technique which
matches with b3-I of table II.

Fig. 12a and 12d compare analytical and simulated THD
and WTHD of proposed technique with all other existing OVM
techniques in the range of 0.577 ≤ M ≤ 0.622. THD and
WTHD of proposed technique is compared with CSVPWM
experimentally in Fig. 12b and 12e. The continuous lines in
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(a) Experimental ia and ia′ at M = 0.612 (b) Experimental ia, ib, ic at M = 0.612 (c) Experimental vab and va′b′ at M = 0.612

(d) Simulated ia and ia′ at M = 0.612 (e) Simulated ia, ib, ic at M = 0.612 (f) Simulated vab and va′b′ at M = 0.612

(g) Experimental ia and ia′ at M = 0.577 (h) Experimental ia and ia′ at M = 0.622 (i) Experimental iα and iβ at M = 0.622

(j) Experimental vab and va′b′ at M = 0.577 (k) Experimental vab and va′b′ at M = 0.622
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(l) polar plot of v∗z1 + jv∗z2

Fig. 11: Experimental and simulated waveforms of proposed technique
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(a) Analytical and simulated THD (b) Analytical and experimental THD (c) Simulated low-frequency current ripple

(d) Analytical and simulated WTHD (e) Analytical and experimental WTHD (f) Simulated high-frequency current ripple

Fig. 12: Comparison of implemented optimal strategy (2L1M2S) with existing overmodulation techniques

these plots correspond to analytical values. The expression of

WTHD is given by WTHD =

√∑
n=12m±5(

vao|n
n )2

Vo
, which

is the indicator of the copper loss incurring in z1 − z2 plane.
THD and WTHD performance of proposed 2L1M2S technique
is similar to existing SVOVM4-2, as expected from analysis,
and better than existing CSVPWM and SVOVM4-1. The close
agreement between simulated and experimental results with
analysis validates the proposed strategy. Due to dead-time
of inverter or slight asymmetry in the winding, experimental
THD value at M = 0.577 is small but non-zero, [21]. Fig.
12c compares simulated low-frequency (harmonic order less
than 50) ripple RMS currents of proposed optimal techniques
with other existing OVM techniques. As SVOVM4-2 is one
of the proposed techniques, it is not shown separately. Fig.
12f compares simulated RMS high-frequency (harmonic order
more than 50) ripple currents of 2L2M based SVOVM4-2
and one 4L based optimal technique which uses a-II in 1U
and c-II in 2U in OVM. The performance of later is better
and this justifies our claim that high-frequency ripple current
performances of different optimal techniques are different.

VII. CONCLUSIONS AND FUTURE WORK

This paper expresses the average voltage space-vectors of
6φ inverter in α − β and z1 − z2 subspaces as a linear
combination of average voltage vectors of two 3φ inverters.
Using these expressions, the paper formulates the problem
of minimization of length of the applied average voltage
vector of z1 − z2 subspace in each switching cycle in terms
of 3φ space-vectors. Here, active vectors need not to be
specified a priori and hence the formulation is different from
the minimization strategy of existing SVOVM techniques of
6φ inverter. The proposed formulation achieves the optimal
RMS voltage injection throughout the whole overmodulation
(OVM) region, i.e., from modulation index 0.577 to 0.622.
This paper reports 8 possible ways to realize the optimal
strategy in one part of the OVM region and 2 possible ways
in another part of OVM region. Each of these ways lead to
different PWM techniques which have different current ripple
and flux ripple performances. These performance comparisons

are not explored in this paper and considered as future work.
Finally, an optimal strategy has been identified which can be
implemented per 3φ inverter basis without involving complex
6φ transformation. This technique uses 2 large, 1 medium
and 2 small active vectors of α − β in one part of OVM
and 2 large, 1 medium vectors in another part. With this
strategy, the optimal solution is validated through experiments
on laboratory scale hardware prototype and simulations in
Matlab at 3.5 kW.
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