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Abstract—Two level voltage source inverters are extensively
employed to integrate renewable energy sources and storage with
the grid. The output voltage of the inverter, modulated with
conventional space vector PWM, contains switching frequency
components along with the desired grid frequency component.

Usually a filter inductor or an LCL filter is used to remove
these high frequency components resulting in low THD in the
grid current. Either all, or a majority of the higher frequency
components of the inverter output voltage appear across the
inverter-side filter inductance, resulting in ripple current through
it. This paper presents an analytical estimation of the peak-
to-peak ripple current as a function of the modulation index,
essential for the design of the filter. Simulation results confirm
the analytical prediction of the ripple current.

Index Terms—Peak-to-peak ripple current, grid-tied inverter,
VSI, LCL filter, SVPWM

I. INTRODUCTION

G
RID-tied two level voltage source inverters (VSI) have

become a standard solution for the integration of renew-

able energy sources like photovoltaic, and energy storage to

the grid [1], [2]. The power rating of these converters ranges

from a few kilowatts to several megawatts. The grid-tied VSI

is switched to control the exchange of the active and reactive

power with the grid. The pulse width modulated (PWM) output

voltage of the VSI contains switching frequency harmonics

along with the desired fundamental component at the grid

frequency. These harmonics have been extensively studied in

the context of motor drives [3].

An inductor connecting the inverter output to the grid is

the simplest filter to attenuate these harmonics. However, a

purely inductive filter alone proves bulky. Typically an LCL
filter is used to remove these high frequency harmonics [4]

in grid-tied applications. Due to very low THD in the grid

current (< 5% per IEEE 519), it is reasonable to assume that

the voltage across the capacitor of the LCL filter is close to

sinusoidal at the grid frequency. This implies that most of the

switching components of the voltage generated by the VSI

appear across the inverter side inductance of the LCL filter

resulting in substantial ripple current through it.

For the design of the inverter side filter inductance it is

essential to estimate the peak-to-peak ripple current. Again

assuming low THD in the grid current, most of the ripple

current flows through the capacitance of the LCL filter. So

prediction of the peak-to-peak ripple component present in the

output line currents of the VSI is also important for the design

of the filter capacitance. An estimate of the maximum peak-to-

peak current ripple over a complete range of modulation index

is known in the literature [5]. Some authors consider this as

an approximate estimate as no analysis has been presented to

validate it [4], [5].

This paper confirms this limit through a detailed analysis

of the switching voltage that appears across the inverter side

filter inductance, when modulated with conventional space

vector PWM. This paper also provides a closed form analytical

expression of the peak-to-peak ripple current as a function

of the modulation index, essential for the filter design. The

entire system has been simulated in MATLAB and presented

simulation results verify the analysis of the peak-to-peak ripple

current.

II. ANALYSIS

This section presents a detailed analysis of the peak-to-peak

ripple in the output current of the inverter. As argued in the

Introduction, under low grid current THD, the voltage across

the capacitance of the LCL filter can be approximated as the

grid voltage. Therefore, the analysis conducted for a purely

inductive, first-order filter will be valid for an LCL filter as

well. Fig. 1 shows this simplified configuration considered in

this research, where L is the inverter side filter inductance. The

inverter, switching at a frequency fsw, modulates a DC voltage,

VDC , connected across the terminals P,N to generate voltages

vaN , . . . at its output terminals. These voltages can be written

as the sum of a low-frequency component (averaged over a

carrier cycle of period Ts = 1/fsw) and a high-frequency

(switching) component: The inductors La,b,c limit the ripple

current entering the grid at the points a′, b′, c′. The complex
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Fig. 1. System diagram
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power transfer is controlled by adjusting a) the phase angle

δ between the synthesized voltages (van, . . .) and the grid

voltages v′an, . . .; and b) the amplitude of the synthesized

voltage.

viN = viN + ṽiN i ∈ {a, b, c} (1)

= vin + ṽin + vnN + ṽnN︸ ︷︷ ︸
:=vCM

(2)

vCM =
vaN + vbN + vcN

3
(3)

Let ω be the grid voltage angular frequency. Further, let

van = mVDC cos(ωt+ δ)

vbn = mVDC cos(ωt− 2π/3 + δ) (4)

vcn = mVDC cos(ωt+ 2π/3 + δ)

where m is the modulation index. Fig. 2 shows the inverter

AC output currents for a 480V, 60Hz grid with L = 1mH at

m = 0.55,mVDC = v̂′an, δ = π/24, fsw = 6 kHz
Since the common-mode path is open, no current flows due

to the common-mode voltage vCM: to calculate the current

flowing through the inductors, it is sufficient to look at the volt-

ages vin+ṽin for i ∈ {a, b, c}. Furthermore, the low frequency

component does not contribute to the peak-to-peak ripple by

definition (peak-to-peak ripple is the switching ripple riding

on the low frequency component). For calculating the peak-

to-peak ripple, the high-frequency component alone of the

voltage across the inductor needs to be examined. Therefore,

the analysis could be done at no-load (δ = 0,mVDC = v̂′an).

Let α ∈ [0, 2π) be the phase angle of the voltage synthe-

sized by the inverter: α = ωt + δ. Let sector-I be α : α ∈
[0, π/3). Fig. 3 shows the voltages vbn and van, and their

low frequency components vbn, van at different points within

sector-I at no-load (δ = 0,mVDC = v̂′an). Currents evolve

differently depending upon the the value of the fundamental

component of the voltage. Therefore it is required to consider

multiple cases shown in Figs. 3(a)–(d), and identify the path

along which maximum Volt-seconds are accumulated (∆Vs)
for each of these cases, where Volt-seconds (Vs) is the integral

of the voltage across the inductor.

A. Sector-I, vbn ≶ 0

First consider the case vbn < 0 shown in Fig. 3(a). By

symmetry of SVPWM, the accumulated Volt-seconds are reset
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Fig. 2. Inverter output currents for a 480V, 60Hz system with L = 1mH
at m = 0.55, mVDC = v̂′an, δ = π/24, fsw = 6kHz (power flows from
the inverter to the grid)
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Fig. 3. Switching voltage synthesized by the inverter along with its switching
cycle average and the current through the inductor at no-load for phases a
and b in the first sector (α ∈ [0, π/3))



to zero every half cycle, at the peaks and the valleys of the

triangular carrier. Furthermore, the ripple current waveform

can be considered periodic between consecutive switching

cycles (since the line frequency is much lower than the

switching frequency).

Due to the symmetric placement of the zero-vector and

the active vectors, |∆Vs| is maximized along one of the

three paths, 1 − 1′, 2 − 2′, and 3 − 3′. Furthermore,

Vs(1),Vs(1′),Vs(3), and Vs(3′), are all equal in magnitude. It

is then seen in Fig. 3(a) that the maximum Vs are accumulated

along the path 2′ − 2′′, which is also equal in magnitude to

2− 2′.

Let da be the duty ratio of the top switch of phase leg a of

the inverter. db, dc can be defined similarly for the other legs.

dcom :=
1

2
+

1

2VDC
(−max(van, vbn, vcn)

−min(van, vbn, vcn)) (5)

da =
van
VDC

+ dcom

db =
vbn
VDC

+ dcom (6)

dc =
vcn
VDC

+ dcom

From Fig. 3(a) along 2− 2′

|∆Vs|2−2′ =

(
VDC

3
+ vbn

)
× da − db

fsw
+ vbn

1− da
fsw

(7)

After substituting the expressions for da, . . . and vbn, and

normalizing ∆Vs by VDC/fsw, (7) yields (10). Furthermore,

the path 2− 2′ is also the path of maximum Volt-seconds for

vbn > 0, shown in Fig. 3(b), and (7) and (10) apply to this

case as well.

B. Sector-I, van > VDC/3

It is seen from Fig. 3(c) that the maximum Volt-seconds are

accrued along the path 2− 2′

|∆Vs|2−2′ =

(
2VDC

3
− van

)
×
(
da − db
fsw

)
− van

(
1− da
fsw

)

(8)

After appropriate substitution and normalization by VDC/fsw,

(8) yields (11)

C. Sector-I, van < VDC/3

This case is shown in Fig. 3(d). Using similar arguments

as above, it can be shown that the maximum Volt-seconds

are accumulated along the path 3 − 3′ and have a magnitude

defined below:

|∆Vs|3−3′ = (1− da)
van
fsw

(9)

After appropriate substitution and normalization by VDC/fsw,

(9) yields (12)
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Fig. 4. Switching voltage synthesized by the inverter along with its switching
cycle average and the current through the inductor at no-load for phase c in
the first sector (α ∈ [0, π/3)) with vcn < −VDC/3

D. Sector-I, phase c

Fig. 4 shows the duty ratios, voltages, and current for phase

c at no-load under the same conditions as Fig. 3. vcn is lower

than −VDC/3. It is seen that the maximum Volt-seconds are

accumulated along the path 2− 2′

|∆Vs|2−2′ =

(−VDC

3
− vcn

)
×
(
da − db
fsw

)
− vcn

(
1− da
fsw

)

(13)

Performing a change of variable β := π/3 − α and

substituting the voltages and the duty ratios for sector-I in

the equation above yields the same expression as (11), but in

terms of β. Similar result can be found for vcn > −VDC/3
using the same change of variable. Therefore the ripple current

of phase c in sector-I has the same envelope as phase a, but

mirrored about α = π/6.

E. Sectors-II–VI

The voltages synthesized by the inverter in (4) are rewritten

with δ = 0

van = mVDC cos(α)

vbn = mVDC cos(α− 2π/3) (14)

vcn = mVDC cos(α+ 2π/3)

Performing a change of variable θ := 2π/3− α yields

van = mVDC cos(θ − 2π/3)

vbn = mVDC cos(θ) (15)

vcn = mVDC cos(θ + 2π/3)

In Sector-I, α ∈ [0, π/3); in Sector-II, α ∈ [π/3, 2π/3). As α
varies between π/3 and 2π/3, θ varies between π/3 and 0:

van(θ) = vbn(α)

vbn(θ) = van(α) (16)

vcn(θ) = vcn(α)

Repeating the steps in the previous sections for Sector-II yields

the same envelopes as (10)–(12) in terms of the angle θ: the

envelope obtained from (10) applies to phase a in Sector-II
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1
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−m cos(α)− m

2
cos

(
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3
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Fig. 3(d) (12)

whereas the ones obtained from (11) and (12) apply to phases

b and c. Similar changes of variable establish the applicability

of the result to all six sectors.

III. SIMULATION

The system of Fig. 1 was simulated with a 480V, 60Hz
grid, 1mH filter inductors, and fsw = 6 kHz. Fig. 5 shows the

line currents at no-load for phases a, b along with the envelopes

derived using (10)–(12). Fig. 6 shows all three line currents

at no-load over a complete fundamental cycle and the derived

envelope extended to all sectors. It is seen that the current is

always confined within the derived envelope, and that the peak

currents trace this envelope.

Since the three phases are symmetrical, the ripple currents’

pattern alternates among the phases sector to sector. To es-

tablish a supremum, therefore, it is necessary to calculate the

maxima of the functions f, g, h w.r.t. α as a function of the

modulation index m.

IV. UPPER LIMIT AS A FUNCTION OF m

A. Maximizing f

Let ψ := α − 2π/3. Making the substitution in (10) and

differentiating w.r.t. ψ,

f ′
m(ψ) = − m√

3
sin

(
ψ +

5π

6

)
− m

2
sinψ +

3

2
m2 sin 2ψ

(17)

f ′′
m(ψ) = − m√

3
cos

(
ψ +

5π

6

)
− m

2
cosψ + 3m2 cos 2ψ

(18)

From (17) and (18), it is seen that ψ = −π/2(≡ α = π/6)
is a maxima of (10) since f ′

m(−π/2) = 0, f ′′
m(−π/2) < 0.

Therefore,

sup
α∈[0,π/3)

(fm(α)) =
m

2
√
3

(19)

B. Maximizing h for m < 1/3

As discussed in II-B and II-C, the peak-to-peak ripple in the

current of phase a at no-load in Sector-I is given by different

expressions, depending upon the instantaneous value of van.

However, it is easy to see that for m < 1/3, the conditions

for the applicability of g(m,α) to max(|Vs|) would never be

met since van < VDC/3 ∀α
Therefore for lower modulation indexes m < 1/3, it is

sufficient to maximize hm(α) over α ∈ [0, π/3) to establish

the supremum of phase a peak-to-peak current ripple. Fig. 7

shows the plot of h′m(α) for different values of m < 1/3 and

it is seen that the derivative h′ is always less than or equal to

zero for m,α ∈ [0, 1/3) × [0, π/3): hence the supremum of

phase a current ripple in Sector-I for m < 1/3 is hm(α = 0)

sup
α∈[0,π/3)

(hm(α)) =
m

2

(
1− 3m

2

)
m < 1/3 (20)

C. Phase a, m ≥ 1/3

Let,

α∗ = cos−1

(
1

3m

)
m ≥ 1

3
(21)
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(a) Envelope of ia at no-load derived from the functions g(m,α)
(11) and h(m,α) (12)
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Fig. 5. Envelopes formed by the derived peak-to-peak currents in the first
sector for phases a and b at m = 0.40
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Fig. 6. Derived envelope and 3-phase currents for a complete fundamental
cycle at no-load at different modulation indexes
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The envelope of ia at no-load in Sector-I can be written as

Γ(m,α) =





hm(α) m < 1/3

gm(α) m,α ∈ [1/3, 1/
√
3]× [0, α∗)

hm(α) m,α ∈ [1/3, 1/
√
3]× [α∗, π/3)

(22)

Fig. 8 is the surface plot of m−1 × Γ(m,α) for m,α ∈
[1/3, 1/

√
3] × [0, π/3), with the ‘lid’ being m−1 sup(f(α))

which is given by (19). The division by m is only for

normalization. It is seen that the supremum of phase b peak-to-

peak ripple current is also an upper bound on phase a current.

The supremum derived for phase b in (19) is a supremum

for the peak-to-peak ripple current over the three phases for

m ≥ 1/3. For m < 1/3, the supremum is either given by

(19), or by (20): it is further seen that the value given by (19)

is greater than the value given by (20) not only for m ≥ 1/3,
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Fig. 9. The peak-to-peak current normalized by VDC/Lfsw as a function
of the modulation index m

but for m ≥ m∗ where m∗ = 2
3

(
1− 1√

3

)

ĩpp =





mVDC

2Lfsw

(
1− 3m

2

)
m ∈ [0,m∗)

mVDC

2
√
3Lfsw

m ∈ [m∗, 1/
√
3]

(23)

The normalized peak-to-peak current as a function of m from

(23) is plotted in Fig. 9.

Further, as argued in II-D, for Sector-I, the upper bound

on phase a current ripple is also an upper bound on phase c
current ripple. In addition, as explained in II-E, considering

one sector is sufficient to predict the envelope of the ripple

currents in all sectors. Moreover, the ripple current analysis,

although conducted at no-load, is valid at load as well since

the high-frequency components in the inverter output voltage

that cause the ripple current to flow are present at all loads,

including no-load. Therefore, the preceding analysis for phases

a, b in Sector-I establishes the supremum on the ripple currents

of all three phases in all six sectors, at all loading conditions.



V. CONCLUSION

This paper presented an analysis of the high-frequency

switching current ripple in the output ac current of a two-

level voltage source inverter connected to the grid using filter

inductors. The envelope of the ripple current was derived

analytically for one sector and its applicability to all sectors

was shown. The results were verified using simulation and a

supremum of the peak-to-peak ripple current was established.

This upper limit on ripple current is essential for proper filter

design to meet the grid current THD criteria.

Validity of the analysis to LCL filter was claimed qualita-

tively. Examination using simulation and hardware prototype

is underway.
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