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Translation Averaging in 3D Computer Vision

Solving for translations given directions.

• Input: Directions.

• Output: Translations.

• Solution upto scale and origin.

• Assumes known 3D rotations.

• Application: Structure-from-Motion.

Problem Setup

• Represented as a network: G = (V , E).

• Nodes: absolute translations Ti ∈ R3, i ∈ V .

• Edges: directions vij ∈ S2, (i , j) ∈ E .

• Called bearing-based network.

• Consistency equation with scale (s) and origin (TO)
ambiguity:

vij =
Tj − Ti

‖Tj − Ti‖
=

s(Tj − TO)− s(Ti − TO)

‖s(Tj − TO)− s(Ti − TO)‖
.

Main Considerations

Well-conditioned triangle Ill-conditioned triangle (Type-I) Ill-conditioned triangle (Type-II)

Conditioning with respect to perturbations in directions (green → red =⇒ A → A’).

• Parallel rigidity [1]: Deals with the uniqueness of the solution.

• Outlier detection/suppression [2, 5]: Deals with gross errors in input directions.

• Sensitivity [Ours]: Deals with small perturbations in input directions.

Theoretical Results: Smallest Solvable Network

Formulation: Consider the smallest solvable bearing-based network i.e. a network G∆ of 3 nodes,
V∆ = {1, 2, 3}, with all possible edges, E∆ = {(1, 2), (2, 3), (3, 1)}. Least squares problem to
estimate scales: mins ‖Vs‖2 s.t. ‖s‖2 = 1.
Solution: Eigen vector corresponding to smallest eigenvalue of VTV.

Theorem 1: For a set of consistent directions, vij, (i , j) ∈ E∆, in G∆, the absolute change in any
eigenvalue of VTV, denoted as |δλ|, when the directions vij are perturbed by small rotations δRij,
with nij and δθij > 0 being the rotation axis and angle, is bounded by

|δλ| ≤
∑

(k,i ,j)∈TI (∆)

δθij · ‖v
nij⊥
ki ‖ · ‖v

nij⊥
kj ‖ ·

∣∣∣sinφ
nij⊥
(k,i),(k,j)

∣∣∣
sin2 φ(k,i),(k,j)

·

[(
1 + (vTikvjk)2

) (
(vTij vik)2 + (vTij vjk)2

)
− 4 · vTikvjk · vTij vik · vTij vjk

]1
2 ,

where TI (∆) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, vnij⊥ is the component of v orthogonal to nij, φ
nij⊥
(k,i),(k,j)

is the angle between v
nij⊥
ki and v

nij⊥
kj , and φ(k,i),(k,j) is the angle between vki and vkj.

Angle Matrix for G∆: AG∆
∈ R3×3 (φ(k,i),(k,j): angle between vki and vkj)

AG∆
=

φ(1,2),(1,2) φ(2,1),(2,3) φ(1,2),(1,3)

φ(2,3),(2,1) φ(2,3),(2,3) φ(3,2),(3,1)

φ(1,3),(1,2) φ(3,1),(3,2) φ(3,1),(3,1)

 =

 0 φ(2,1),(2,3) φ(1,2),(1,3)

φ(2,1),(2,3) 0 φ(3,2),(3,1)

φ(1,2),(1,3) φ(3,2),(3,1) 0

 .
Theorem 2: Consider the bearing based-network of 3 nodes and 3 edges, G∆ = (V∆, E∆), and the
corresponding angle matrix AG∆

. The conditioning of the matrix AG∆
signifies the skewness of the

triangle formed using the directions in E∆.

Theoretical Results: General Network Consisting of Triplets

Extending angle matrix:
• Angle Matrix for G: AG ∈ RM×M (M is the number of edges in G).

• Assumption: All edges in G are a part of at least one triplet.

Conditioning of Translation Averaging: Defined as condition number of the angle matrix AG.

Theorem 3: Consider a bearing-based network G, with all edges contributing to triplets. The angle
matrix AG, corresponding to G, is well conditioned if the minimum angle (or equivalently all the
angles) in all the triangles formed by the triplets are sufficiently large.

Dealing with uniqueness of solution:
• Theorem 3 does not assume parallel rigidity of the network G.

• Construct triplet network: GT = (VT , ET), Nodes VT denote a triplet in G, Edges ET connect the
nodes if an edge is common between the triplets in G.

Theorem 4: Given a bearing-based network G, with all edges contributing to triplets forming
triangles, and its corresponding triplet network GT , the maximal parallel rigid component of G can
be determined by the edges in G contributing to the largest connected component of GT .

Analysis of Real Data

Alamo reconstruction [4] using COLMAP [3].

Blue triangle: Ill-conditioned (Type-I).
Green triangle: Ill-conditioned (Type-II).

Piccadilly Tower of London

Maximum error of directions vs minimum angle between edges.

Abundance of skewed triangles.

Outlier presence 6= Skewed triangle.

Experimental Results

Dataset #Nrem #Mrem Mean-ATE ↓ RMS-ATE ↓ Removed Node Errors Ptri ↑ BAiters ↓
w/o filter w/ filter w/o filter w/ filter Mean RMS w/o filter w/ filter w/o filter w/ filter

Alamo 12 197 4.7 4.5 11.1 10.5 22.9 39.5 142 144 73 54
Ellis Island 8 69 23.2 22.1 50.7 51.8 98.6 118.1 57 58 40 33

Gendarmenmarkt 24 257 50.6 40.9 77.8 61.1 149.7 190.8 101 104 31 21
Madrid Metropolis 24 197 13.9 12.7 29.4 26.1 54.2 61.2 46 49 66 83

Montreal Notre Dame 4 147 4.4 4.3 10.0 9.9 31.2 34.1 115 118 59 37
NYC Library 13 211 6.5 5.2 15.8 12.6 28.7 38.1 77 79 100 74
Notre Dame 3 108 3.3 3.3 6.4 6.4 6.9 7.0 376 375 34 22

Piazza del Popolo 18 268 8.0 8.0 13.0 13.1 15.0 17.3 91 94 34 44
Piccadilly 61 901 5.3 5.1 11.0 10.8 20.8 29.2 231 234 53 47

Roman Forum 41 394 12.8 10.4 27.0 19.6 65.4 100.5 196 196 31 21
Tower of London 17 141 15.6 14.5 32.2 30.3 63.7 90.3 107 110 89 85

Union Square 26 232 14.5 10.6 24.8 18.1 34.5 49.9 57 56 122 52
Vienna Cathedral 29 282 10.2 10.2 17.8 18.4 21.4 27.5 219 222 52 25

Yorkminster 34 363 20.4 19.3 29.5 28.3 44.0 51.4 175 168 58 33

Absolute translations errors (ATE) (in m), points triangulated (Ptri × 103) and bundle adjustment iterations (BAiters)

on 1DSfM [4] datasets using BATA [5]. Removed Node Errors: Errors of removed nodes in the unfiltered network.

Conclusion

This work deals with sensitivity in translation averaging under input uncertainty;

• studies sensitivity in estimating edge scales suggesting skewed triangles are unstable,

• defines conditioning of translation averaging problem and provides a sufficient criterion to ensure
it is well-conditioned,

• proposes an efficient algorithm to remove skewed triangles from the network while ensuring
parallel rigidity,

• demonstrates the effectiveness of the proposed filter with better absolute translations, more 3D
points triangulated and faster convergence of bundle adjustment for filtered networks.
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