Sensitivity in Translation Averaging
Lalit Manam and Venu Madhav Govindu

Translation Averaging in 3D Computer Vision

Input: Directions.

- Output: Translations

Solution upto scale and origin
Assumes known 3D rotations.
Application: Structure-from-Motion.

Problem Setup

- Represented as a network: $\mathcal{G}=(\mathcal{V}, \mathcal{E})$
- Nodes: absolute translations $\mathbf{T}_{i} \in \mathbb{R}^{3}, i \in \mathcal{V}$.
- Edges: directions $\mathbf{v}_{i j} \in \mathbb{S}^{2},(i, j) \in \varepsilon$
- Called bearing-based network.

Consistency equation with scale (s) and origin (\mathbf{T}_{o}) ambiguity:
$v_{i j}=\frac{\mathbf{T}_{\boldsymbol{j}}-\mathbf{T}_{i}}{\left\|\mathbf{T}_{j}-\mathbf{T}_{i}\right\|}=\frac{s\left(\mathbf{T}_{j}-\mathbf{T}_{o}\right)-s\left(\mathbf{T}_{i}-\mathbf{T}_{o}\right)}{\left\|s\left(\mathbf{T}_{j}-\mathbf{T}_{o}\right)-s\left(\mathbf{T}_{i}-\mathbf{T}_{o}\right)\right\|}$

Main Considerations

Well-conditioned triangle III-conditioned triangle (Type-I) III-conditioned triangle (Type-II)
IIl-conditioned triangle (Type-l) ili-conditioned trian
Parallel rigidity [1]: Deals with the uniqueness of the solution
Outlier detection/suppression [2, 5]: Deals with gross errors in input directions.
Sensitivity [Ours]: Deals with small perturbations in input directions.

Theoretical Results: Smallest Solvable Network
Formulation: Consider the smallest solvable bearing-based network i.e. a network $\mathcal{G}_{\text {o }}$ of 3 nodes,
$\mathcal{V}_{\Delta}=\{1,2,3\}$, with all possible edges, $\mathcal{E}_{\Delta}=\{(1,2),(2,3),(3,1)\}$. Least squares problem to $\mathcal{V}_{\Delta}=\{1,2,3\}$, with all possible edges, $\mathcal{E}_{\Delta}=\{(1,2),(2,3),(3,1)\}$. Least squares problem to
estimate scales:
mins $\left\|\mathbf{V}_{s}\right\|_{\text {s.t }}$ s. $\left\|\|^{2}=1\right.$ Solution: Eigen vector corresponding to smallest eigenvalue of $\mathbf{V}^{\top} \mathbf{V}$.
 eigenvalue of $\mathbf{V}^{\top} \mathbf{V}$, denoted as $|\delta \lambda|$, when the directions $\mathbf{V}_{i j}$ are perturbed by small rotations $\delta \mathbf{R}_{i j}$
with $\mathbf{n}_{i j}$ and $\delta \theta_{i j}>0$ being the rotation axis and angle, is bounded by

$$
\left[\left(1+\left(v_{i k}^{T} v_{j k}\right)^{2}\right)\left(\left(v_{i j}^{T} v_{k k}\right)^{2}+\left(v_{i j}^{T} \mathbf{v}_{j k}\right)^{2}\right)-4 \cdot \mathbf{v}_{i k}^{T} \mathbf{v}_{j k} \cdot v_{i j}^{T} v_{i k} \cdot v_{i j}^{T} \mathbf{v}_{j k}\right]^{\frac{1}{2}}
$$

where $T I(\Delta)=\{(1,2,3),(2,3,1),(3,1,2)\}, v^{\mathbf{n}_{j} \perp}$ is the component of \mathbf{v} orthogonal to $\mathbf{n}_{j ;}, \phi_{(k, i),\left(k_{j}\right)}^{\mathbf{n}_{j} \perp}$ is the angle between $\mathbf{v}_{k i \perp}^{n_{j i}}$ and $\mathbf{v}_{j / j}^{n_{j}}$, and $\phi_{(k, i)(k, j)}$ is the angle between $v_{k i}$ and $v_{k j}$

Angle Matrix for $\mathcal{G}_{\Delta}: \mathbf{A}_{\mathcal{G}_{\Lambda}} \in \mathbb{R}^{3 \times 3}\left(\phi_{(k, i,),(k, j)}\right.$: angle between $\mathbf{v}_{k i}$ and $\left.\mathbf{v}_{k j}\right)$

Theorem 2: Consider the bearing based-network of 3 nodes and 3 edges, $\mathcal{G}_{\Delta}=\left(\mathcal{V}_{\Delta}, \mathcal{E}_{\Delta}\right)$, and the
corresponding angle matrix $\mathbf{A}_{\mathcal{G}_{\triangle}}$. The conditioning of the matrix $\mathbf{A}_{G_{\Delta}}$ signifies the skewness of the corresponding angle matrix $\boldsymbol{A}_{\mathcal{G}_{\Delta}}$. he cond.
triangle formed using the directions in \mathcal{E}_{Δ}.

Theoretical Results: General Network Consisting of Triplets

Extending angle matrix

- Angle Matrix for $\mathcal{G}: \mathbf{A}_{\mathcal{G}} \in \mathbb{R}^{M \times M}$ (M is the number of edges in \mathcal{G}).
- Assumption: All edges in \mathcal{G} are a part of at least one triplet.

Conditioning of Translation Averaging: Defined as condition number of the angle matrix \mathbf{A}_{Δ}
Theorem 3: Consider a bearing-based network \mathcal{G}, with all edges contributing to triplets. The angl
matrix $\boldsymbol{A}_{\mathcal{C}}$ corresponding to \mathcal{G} is well conditioned if the minimum angle (or equivalently all the matrix $\mathbf{A}_{\mathcal{G}}$, corresponding to \mathcal{G}, is well conditioned if the minimum angle (or equivalently all the angles) in all the triangles formed by the triplets are sufficiently large.

Dealing with uniqueness of solution

- Theorem 3 does not assume parallel rigidity of the network \mathcal{G}

Construct triplet network: $\mathcal{G}_{T}=\left(\mathcal{V}_{T}, \mathcal{E}_{T}\right)$, Nodes \mathcal{V}_{T} denote a triplet in \mathcal{G}, Edges \mathcal{E}_{T} connect the nodes if an edge is common between the triplets in \mathcal{G}.
Theorem 4: Given a bearing-based network \mathcal{G}, with all edges contributing to triplets forming triangles, and its corresponding triplet network \mathcal{G}_{T}, the maximal parallel rigid component
be determined by the edges in \mathcal{G} contributing to the largest connected component of \mathcal{G}.

Analysis of Real Data

$$
\text { Outier presence }=\text { Skewed triangle }
$$

$\frac{2}{2}$ Tower of London Outier presence \neq Skewed triangle.

Conclusion

This work deals with sensitivity in translation averaging under input uncertainty;

- studies sensitivity in estimating edge scales suggesting skewed triangles are unstable,
- defines conditioning of translation averaging problem and provides a sufficient criterion to ensure

It is weli-conditioned,

- proposes an efficient algorithm to remove skewed triangles from the network while ensuring
- demonstrates the effectiveness of the proposed filter with better absolute translations, more 3D points triangulated and faster convergence of bundle adjustment for filtered networks.

References

Acknowledgments

Lalit Manam is supported bya Prime Minister's Research Fellowship, Government of fldia. This research was supported in part by a C

