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Abstract

Translation averaging solves for 3D camera translations
given many pairwise relative translation directions. The
mismatch between inputs (directions) and output estimates
(absolute translations) makes translation averaging a chal-
lenging problem, which is often addressed by comparing
either directions or displacements using relaxed cost func-
tions that are relatively easy to optimize. However, the dis-
tinctly different nature of the cost functions leads to varied
behaviour under different baselines and noise conditions.
In this paper, we argue that translation averaging can ben-
efit from a fusion of the two approaches. Specifically, we re-
cursively fuse the individual updates suggested by direction
and displacement-based methods using their uncertainties.
The uncertainty of each estimate is modelled by the inverse
of the Hessian of the corresponding optimization problem.
As a result, our method utilizes the advantages of both meth-
ods in a principled manner. The superiority of our trans-
lation averaging scheme is demonstrated via the improved
accuracies of camera translations on benchmark datasets
compared to the state-of-the-art methods.

1. Introduction
Global methods for Structure-from-Motion (SfM) use
a number of pairwise motion estimates to solve for the
absolute motions of individual cameras. In this context of
global SfM, the absolute motions can be represented as
nodes of a viewgraph where the pairwise relative motions
form the edges. Since there is an inherent scale ambiguity
for pairwise relative translation (epipolar geometry [22]),
the problem of translation averaging is one of estimating
camera translations given the relative translation directions
for individual viewgraph edges. Such schemes fall under
the class of motion averaging methods [18, 19], which,
unlike incremental methods [34, 38, 43], jointly solve for
all the cameras at once. The dissimilarity between the input
measurement space (directions) and the output solution
space (camera translations) makes translation averaging

a challenging problem since this involves the estimation
of translation scales. Moreover, the existence of a unique
solution is determined by the non-trivial issue of parallel
rigidity [3, 33].

Translation Averaging Formulation: Let G = (V, E)
be a viewgraph, where V and E denote the set of nodes and
edges in G, respectively. Each node i represents an absolute
3D rotation Ri ∈ SO(3) and a translation Ti ∈ R3 denot-
ing its motion with respect to a global frame of reference.
Each edge (i, j) ∈ E denotes the relative rotation and trans-
lation direction (Rij , tij) between camera nodes i and j,
where tij ∈ S2. These result in the following relationships:

Rij =RjR
−1
i (1)

tij =
Rj(Ti −Tj)

‖Rj(Ti −Tj)‖
(2)

vij =−R−1j tij =
Tj −Ti

‖Tj −Ti‖
. (3)

The unit vector vij is the translation direction represented
in the global frame of reference. In this paper, we assume
that the rotations Ri for i ∈ V are either known or
estimated using rotation averaging [5, 19, 21]. Given a
set of directions {vij}, the translation averaging problem
is defined as the estimation of absolute translations of N
cameras, i.e. T = {T1, · · · ,TN}.

Given that the inputs are relative directions, the objec-
tive function for translation averaging can compare either
(1) relative directions, obtained from estimated absolute
translations, to that of the observed input directions or (2)
relative displacements, obtained from estimated absolute
translations, to that of the input directions with appro-
priately scaled magnitudes as a substitute for observed
displacements.

Direction and Displacement Costs: A displacement-
based cost compares the relative displacements between the



cameras. It can be written as

edis(T) =
∑

(i,j)∈E

ρdis (‖Tj −Ti − ‖Tj −Ti‖vij‖) ,

(4)
where ρ(.) denotes a robust loss function, and its sub-
script represents a choice of loss function for the specific
cost. Alternately, one can choose a direction-based cost,
which compares the observed heading direction to that of
the equivalent computed from absolute translations [42]. It
can be written as

edir(T) =
∑

(i,j)∈E

ρdir

(∥∥∥∥ Tj −Ti

‖Tj −Ti‖
− vij

∥∥∥∥) . (5)

These costs are still non-convex, and converging to a good
local minimum is still not straightforward.

Relaxed Costs: Both the costs in Eqns. 4 and 5 can
be relaxed by introducing slack variables for each edge
(i, j) ∈ E . For the displacement-based cost (Eqn. 4), one
can have non-negative slack variables, λij ≥ 0, for the mag-
nitude of the input relative displacement [32, 41]. The re-
laxed displacement cost can be written as

erdis(T,Λ) =
∑

(i,j)∈E

ρrdis (‖Tj −Ti − λijvij‖) , (6)

where Λ is the set of slack variables {λij |(i, j) ∈ E}. This
makes the residual terms linear in the relaxed displacement-
based cost. For the direction-based cost (Eqn. 5), the
normalization factor for converting relative displacements
(from estimated absolute translations) to relative directions
can be relaxed with non-negative slack variables, γij ≥
0 [45]. The relaxed direction-based cost can be written as

erdir(T,Γ) =
∑

(i,j)∈E

ρrdir (‖(Tj −Ti) γij − vij‖) , (7)

where Γ is the set of slack variables {γij |(i, j) ∈ E}.
This leads to bilinear residual terms for the relaxed
direction-based cost. Such relaxations to the costs lead to
efficient optimization routines. We note that λij and γij
should ideally be equal to the baseline and inverse baseline
between camera pairs, respectively.

Although the relaxed costs make them relatively easy
to optimize, this does not necessarily mean that the
performance of relaxed costs is similar in the presence
of noise. The optimal solutions of the relaxed costs can
be significantly different depending on the spread of the
absolute translations and the noise in the input translation
directions. In SfM, baselines between the camera pairs
vary a lot and have different noise levels [15], resulting in

varied behaviour of the relaxed cost functions.

Since the direction and displacement-based costs capture
different attributes of the translation averaging problem, we
seek to utilize both of them. To this end, in this paper, we
propose a principled approach by recursively fusing the esti-
mates of both costs based on uncertainty. Such an approach
allows us to improve the quality of translation estimates,
which is demonstrated for synthetic and real datasets.

2. Literature Review
2.1. Rotation Averaging

Translation averaging requires input translation directions
in the global frame of reference, which can be obtained us-
ing known absolute rotations. This is generally obtained us-
ing rotation averaging, which can be classified into intrinsic
and extrinsic methods. Intrinsic methods, like [5, 6, 19, 21],
solve the problem while optimizing directly on the rotation
group SO(3). Extrinsic methods, like [7, 16, 30] solve a
relaxed problem. Some recent developments can be found
in [12, 36, 37] and the references therein.

2.2. Translation Averaging

Govindu [18] solved the translation averaging problem by
minimizing the cross-product between the observed direc-
tions and the estimated relative camera translations. Arie-
Nachimson et al. [2] sets up a linear system of cross-product
constraints using epipolar geometry. Moulon et al. [31]
converted the problem from aligning pairs to triplets by
formulating a trifocal tensor with known rotations. In a
similar spirit, Jiang et al. [24] used camera triplets and
formulated the problem based on the constraints on a tri-
angle. 1DSfM [42], proposed by Wilson et al., used the
direction-based cost and added camera-to-point constraints
to stabilize the problem. A pre-processing step was incor-
porated to remove outliers. The relaxed displacement-based
cost was used by Tron et al. [41] and was solved in a dis-
tributed manner. Least Unsquared Deviations (LUD) [32],
proposed by Ozyesil et al., used L1 loss for robustness on
the relaxed displacement-based cost. Arrigoni et al. [4]
minimized the squared error of the orthogonal projection
of the estimated relative translations onto observed direc-
tions. ShapeFit/ShapeKick [17], proposed by Goldstein
et al., minimized the orthogonal projection using ADMM
but with an L1 loss for robustness. Methods, like Cui et
al. [10] and Cui et al. [8], used feature tracks to estimate
the baseline scales and then solved a linear system. To
avoid the influence of outliers, multiple estimates of base-
line scales from different tracks were handled carefully.
Bilinear Angle-based Translation Averaging (BATA) [45],
proposed by Zhuang et al., used the relaxed direction-based
cost. Manam et al. [28] proposed to improve the input trans-



(a) Disparate baselines
η = {3◦, 4◦, 5◦}, bd = {1, 1, 5} units

(b) Similar baselines
η = {3◦, 3◦, 3◦}, bd = {1, 1, 1} units

(c) Similar baselines
η = {5◦, 4◦, 3◦}, bd = {0.1, 0.1, 0.1} units

Figure 1. Toy examples showing the behaviour of relaxed costs under noise. η denotes the perturbations to get the noisy input directions,
and bd denotes baseline distances. The zoomed part of the region containing the solutions is shown in the inset box. No cost performs the
best in all the scenarios.

lation directions by guiding the weights on the point corre-
spondences in the edges based on the translation estimates
and iteratively reestimating the directions. Some methods
removed severely corrupted directions [35] or sensitive di-
rections [29] to obtain reliable translation estimates. Other
approaches which solved absolute translations include sim-
ilarity averaging [9], averaging essential and fundamental
matrices [25, 26], and utilizing the properties of the matrix
generated from pairwise camera displacements [13].

3. Motivation
Firstly, we look at the non-relaxed costs in a least squares
sense, i.e. ρdis(x) = x2 and ρdir(x) = x2. Then the
displacement-based cost (Eqn. 4) can be written as

edis,ls(T) =
∑

(i,j)∈E

(‖Tj −Ti − ‖Tj −Ti‖vij‖)2

=
∑

(i,j)∈E

‖Tj −Ti‖2
∥∥∥∥ Tj −Ti

‖Tj −Ti‖
− vij

∥∥∥∥2 ,
(8)

and the direction-based cost (Eqn. 5) as

edir,ls(T) =
∑

(i,j)∈E

∥∥∥∥ Tj −Ti

‖Tj −Ti‖
− vij

∥∥∥∥2 . (9)

It can be clearly seen that each residual term in Eqn. 8
is a weighted residual term in Eqn. 9, where the weights
are the squared baseline distance of the edge. This makes
displacement-based cost sensitive to baselines, whereas
direction-based cost does not take into account the base-
lines. This observation is demonstrated empirically in [45].
Hence, the direction-based cost is preferred instead of the
displacement-based cost.

Now let us consider the relaxed versions of these costs
(Eqns. 6 and 7). For a given T, the optimal values of the
non-negative slack variables [45] are given as

λij = max

(
〈Tj −Ti,vij〉
‖vij‖2

, 0

)
,∀(i, j) ∈ E , (10)

γij = max

(
〈Tj −Ti,vij〉
‖Tj −Ti‖2

, 0

)
,∀(i, j) ∈ E . (11)

Let Tij = Tj − Ti. Since vij denotes the direction,
‖vij‖ = 1. Then from Eqns. 10 and 11, for positive val-
ues of slack variables, we get

λij
‖Tij‖

= 〈T̂ij ,vij〉, (12)

γij · ‖Tij‖ = 〈T̂ij ,vij〉, (13)

where â denotes the direction along the vector a. The
left-hand side of Eqns. 12 and 13 (ideally equal to 1) show
the closeness of slack variables, λij and γij , to the baselines
and inverse baselines, respectively. It is dependent on how
closely the estimated relative directions, obtained from
absolute translations, align to the observed input directions.

To understand the behaviour of the relaxed costs, we
consider toy examples which have disparate and similar
baselines with different levels of small perturbation to the
input directions. Again, for a similar analysis, we choose
ρrdis(x) = x2 and ρrdir(x) = x2. In these examples,
three cameras are fixed, and the translation of the fourth
camera is estimated, given directions from the other three.
We use Eqns. 10 and 11 in the relaxed costs (Eqns. 6 and 7
respectively) and perform a grid search to find their optimal
solutions.



(a) Montreal Notre Dame

(b) Yorkminster

Figure 2. Ground truth baseline distances of two datasets. Base-
lines are normalized to have a maximum value of 1 since its rela-
tive spread is of interest.

Fig. 1 shows the difference in the solutions obtained with
the relaxed cost under different baseline conditions. It can
be seen that, in Fig. 1a, when the baselines are disparate,
relaxed direction-based cost performs better. We observed
this trend for all perturbations of input, which are not shown
here due to space constraints. However, when the baselines
are similar, relaxed displacement-based cost performs bet-
ter for the example in Fig. 1b and vice versa in Fig. 1c.
This shows that the performance of both the cost functions
is dependent on the distribution of baselines and noise con-
ditions. In SfM, the camera translations are spread non-
uniformly, where the baselines are similar for a subset of
edges and disparate for another subset. This can be seen in
Fig. 2, which shows the histogram of ground truth baselines
on two 1DSfM datasets [42]. Also, the noise levels are not
known apriori. The resulting different behaviour of the re-
laxed costs suggests that we should seek to combine them
in a principled fashion.

4. Proposed Method

4.1. Constraint Set

The solution to the translation averaging problem is defined
up to a global scale and a choice of origin due to the mis-
match in input space and output space. To fix the origin
ambiguity, we constrain the problem such that the centroid
of the estimated absolute translations is zero. The choice
of constraint for fixing the global scale has a huge impact
on the quality of the solution, which is discussed very well

in [45]. It shows that inequality constraint on scales can
have a shrinkage effect, and equality constraint mitigates
such unintended effects. So, we use the equality-based dot
product constraint. Thus, the constraint set, consisting of
linear equality constraints, is defined as

C =

T

∣∣∣∣∣∣ 1

|E|
∑

(i,j)∈E

〈Tj −Ti,vij〉 = 1,
∑
i∈V

Ti = 0

 .

(14)
LUD [32] uses relaxed displacement-based cost with
inequality constraints. Please refer [32] for details.
BATA [45] uses relaxed direction-based cost with the con-
straint set C. [45] also defines Revised LUD or RLUD,
which uses relaxed displacement-based cost with the con-
straint set C. For the rest of the paper, LUD refers to the
original formulation defined in [32], and RLUD refers to
the modification given in [45]. In our method, we use the
constraint set C.

4.2. Fused Translation Averaging

Our aim is to encapsulate the benefits of both the cost func-
tions to solve the problem. One way to capture the proper-
ties of the cost functions is through the uncertainties of the
estimates. It can be obtained through the Hessians of the
costs without knowing the ground truth. A simple way to go
forward is to consider the uncertainty in the estimates from
the two cost functions to be Gaussian distributed. Firstly,
due to the dissimilarity of input and output space, the in-
put noise cannot be directly related to the output uncer-
tainty. Moreover, input translation directions contain out-
liers, which makes the Gaussian assumption unfit for prac-
tical purposes. To handle the problem of outliers, we use the
IRLS [20, 23] framework. The IRLS approach weights each
residual term in the cost function and then solves the re-
sulting cost as a weighted least squares problem iteratively.
For our specific case of the relaxed costs, the weighted least
squares can be written as

erdis,w(T) =
∑

(i,j)∈E

wrdis
ij ‖Tj −Ti − λijvij‖2, (15)

erdir,w(T) =
∑

(i,j)∈E

wrdir
ij ‖(Tj −Ti) γij − vij‖2 , (16)

where wij denotes the weights obtained in the IRLS
step corresponding to a robust loss. We follow [32, 45]
by recomputing the slack variables in every iteration
using Eqns. 10 and 11 and fix them for the weighted
least squares problem. For reasonable weights wij , the
influence of outliers in erdis,w and erdir,w reduces. Given
that the weights wij are non-negative, the Hessians of
Eqns. 15 and 16 are weighted Graph Laplacians with
wij’s as edge weights, making Eqns. 15 and 16 convex
quadratic. This leads us to a reasonable assumption that



the translations T obtained from erdis,w and erdir,w are
distributed as Gaussian N (Trdis,w,Σrdis,w(Trdis,w)) and
N (Trdir,w,Σrdir,w(Trdir,w)), respectively, where the
subscript of T signifies the solution from the respective
cost and the subscript of Σ(·) denotes their individual
covariances computed at the specific value of translations.
It is known that with Gaussian assumption, the Hessian of
the cost is the same as the inverse covariance (Σ−1) [44].
For the specific case of translation averaging with Eqns. 15
and 16, the Hessian is the Laplacian of a weighted graph,
which is singular. However, we can resolve the gauge
ambiguity by fixing the node with the highest degree as
the origin for our coordinate system and translating the
solutions accordingly. Also, since the translations are
solved with the equality-based constraint in Eqn. 14, the
Hessians, which are dependent on the translations, also are
in the same global scale, thus taking care of the global scale
ambiguity.

In each iteration of IRLS, we consider the previous es-
timate as a prior. The solutions suggested by erdis,w and
erdir,w are the maximum-likelihood estimate based on the
observations (input directions). We compute the Maximum
A Posteriori (MAP) estimate using the previous estimate
and the suggested solutions. This is similar in spirit to the
Bayes recursive filter [40], where the uncertainties are up-
dated with every time step. Since translations obtained from
erdis,w and erdir,w are distributed as Gaussians, we can eas-
ily compute the MAP estimate. Given two estimates T1 and
T2, distributed as Gaussians, with covariances Σ1 and Σ2,
the MAP estimate, TMAP , is given as

TMAP (Σ1,T1,Σ2,T2)

=
(
Σ−11 + Σ−12

)−1 (
Σ−11 T1 + Σ−12 T2

)
. (17)

To leverage the uncertainty information of each cost func-
tion, we compute the MAP estimate using erdis,w and then
using erdir,w in each IRLS iteration. This is somewhat rem-
iniscent of Multi-Objective Optimization (MOO) [11, 14],
where multiple cost functions are simultaneously opti-
mized. However, our aim here is to find a single solution
instead of multiple solutions, as in MOO. This allows us to
use the advantages of both the costs in the IRLS iteration it-
self. We empirically found that using uncertainty only from
one cost function degrades the solution, which is discussed
in the next section. The complete scheme is summarized in
Algo. 1. We provide implementation details of Algo. 1 in
the supplementary material.

5. Experiments
In this section, we provide experimental comparisons of our
method with state-of-the-art methods for translation averag-
ing on synthetic and real datasets. For camera rotations, we

Algorithm 1: Fused Translation Averaging (Fused-
TA)

1 Initialize global translations T
2 while not converged do
3 Update scales Λ and Γ using Eqns. 10 and 11.
4 Update weights for robustness, wij , for erdis.
5 Compute translations, Trdis,w, by solving

Eqn.15 (erdis,w) with fixed Λ.
6 Get the covariances Σrdis,w(Trdis,w) and

Σrdis,w(T).
7 Update translations T←

TMAP (Σrdis,w(Trdis,w),Trdis,w,Σrdis,w(T),T)
using Eqn. 17.

8 Update weights for robustness, wij , for erdir.
9 Compute translations, Trdir,w, by solving

Eqn.16 (erdir,w) with fixed Γ.
10 Get the covariances Σrdir,w(Trdir,w) and

Σrdir,wls(T).
11 Update translations T←

TMAP (Σrdir,w(Trdir,w),Trdir,w,Σrdir,w(T),T)
using Eqn. 17.

12 end

use the rotation averaging solution obtained using the code
provided by [6]1. For all experiments, the maximal par-
allel rigid component of the viewgraph is extracted based
on [27]. We use LUD [32] implemented in Theia [39].
1DSfM [42] and BATA’s [45] code provided by the respec-
tive authors2,3. The implementation of ShapeFit [17] is
not publicly available, and hence we implement it using
ADMM as suggested in the paper. Our method is imple-
mented in MATLAB. To quantitatively evaluate the perfor-
mance of different schemes, the estimated camera transla-
tions are robustly aligned to the ground truth using the code
provided by [42]. All experiments are performed on a PC
with Intel Xeon Silver 4210 processor with 128 GB RAM.
Finally, in each table, the best-performing method for each
dataset is highlighted in bold.

5.1. Synthetic Data

We carry out experiments with synthetic data to study
the comparative behaviour of different methods in the
presence of noise. We check the behaviour of RLUD,
BATA, and our method, denoted as Fused-TA. We first
create a synthetic dataset which has disparate baselines. We
sample 50 points uniformly from two unit spheres, which
are 5 units apart. We consider these points as the ground
truth camera translations. Then, in each sphere, we check

1 https : / / ee . iisc . ac . in / cvlab / research /
rotaveraging/

2https://github.com/wilsonkl/SfM_Init
3https://bbzh.github.io/document/BATA.zip

https://ee.iisc.ac.in/cvlab/research/rotaveraging/
https://ee.iisc.ac.in/cvlab/research/rotaveraging/
https://github.com/wilsonkl/SfM_Init
https://bbzh.github.io/document/BATA.zip


Dataset RLUD BATA Fused-TA (Ours)

Mean Errors

SynDiff , σ = 2 3.96 1.34 0.81
SynDiff , σ = 5 5.41 2.87 2.70
SynSim, σ = 2 0.61 0.42 0.36
SynSim, σ = 5 0.74 0.80 0.70

Median Errors

SynDiff , σ = 2 2.81 0.91 0.72
SynDiff , σ = 5 4.42 2.08 2.08
SynSim, σ = 2 0.54 0.36 0.32
SynSim, σ = 5 0.67 0.73 0.64

Table 1. Camera translation errors (×10−1) averaged over 100
trials for each synthetic dataset. Units are specified by the ground
truth synthetic data.

for the four nearest neighbours of every point and then
add edges between them. This creates edges with similar
baselines. Then, we add 100 edges across the two spheres,
which have much larger baselines than those created within
the spheres. We call this dataset SynDiff . Now, we add
noise to the edges, similar to [45], as follows: we perturb
the ground truth relative translations vgt

ij by multiplying
them with a rotation matrix R(nu

ij , σθij). nu
ij is the axis

uniformly sampled from the orthogonal complement of
vgt
ij and σθij is the rotation angle. θij is drawn from

Gaussian N (0, 1) and σ is the standard deviation of noise.
We take σ ∈ {2, 5} degrees. Next, we generate another
dataset where the baselines are similar. We sample 100
points uniformly from a unit sphere and perform a similar
procedure as done for SynDiff to create noisy datasets.
We call this dataset SynSim. We generate ten instances
for each noise level for both datasets. We evaluate the
performance by checking the mean and median errors for
the translation estimates. For each instance of the graphs,
we run 10 trials of all the methods.

Table 1 shows the absolute translation errors for the syn-
thetic datasets. It can be seen that for SynDiff , which has
disparate baselines, BATA performs better than RLUD. For
SynSim, which has similar baselines, BATA performs bet-
ter than RLUD for σ = 2, but RLUD performs better than
BATA for σ = 5. This shows that neither erdis nor erdir
perform consistently under different baseline and noise con-
ditions. For both SynDiff and SynSim, Fused-TA per-
forms the best. This reveals that the fusion leads to better
translation estimates under different baseline and noise con-
ditions. Fig. 3 shows the histogram of mean errors obtained
from 100 runs for each noise level on both the datasets. For
SynDiff with σ = 5, mean errors for most instances for
Fused-TA are lower than BATA, followed by RLUD. For
SynSim with σ = 5, RLUD has low mean errors for most
of the instances compared to BATA, and Fused-TA performs
better than RLUD. This shows that using uncertainty infor-
mation from both costs improves translation estimates.

(a) SynDiff , σ = 5

(b) SynSim, σ = 5

Figure 3. Histogram of mean errors for the two synthetic datasets
with σ = 5 noise. The leftward shift indicates the superior perfor-
mance of our method.

5.2. Real Data

We present results on real unordered image datasets pro-
vided by the authors of 1DSfM [42]. We use COLMAP [34]
to generate pairwise relative rotations and translations in
1DSfM datasets and align COLMAP’s solution to 1DSfM
provided ground truth to get absolute translations in meters.
Then, the data is pre-processed in a manner similar to
that suggested in [32]: Rotation averaging is performed,
and inconsistent edges with an error greater than 10◦ are
removed. Subsequently, the initial translation directions
are estimated using the epipolar geometric relationship in a
RANSAC loop, where the relative rotations obtained from
the rotation-averaged solution are used. The results for our
method Fused-TA are shown in Table 2 along with other
state-of-the-art methods. We use COLMAP’s solution as
the reference for performance comparison in this setting.
It can be seen from Table 2 that translations improve using
our method (Fused-TA), with Fused-TA performing the
overall best. Specifically, the median errors of the camera



Dataset |V| |E| Mean Errors Median Errors

1DSfM LUD ShapeFit BATA Fused-TA 1DSfM LUD ShapeFit BATA Fused-TA
[42] [32] [17] [45] (Ours) [42] [32] [17] [45] (Ours)

Alamo (ALM) 1016 16831 8e3 7.6 35.3 7.5 7.0 2.4 3.0 2.6 2.4 2.4
Ellis Island (ELS) 908 10383 107.3 45.1 39.7 42.6 27.3 32.3 26.0 15.6 25.3 17.5

Gendarmenkmart (GMM) 1026 14175 3e4 42.3 51.3 43.6 44.4 27.5 25.9 32.3 26.3 27.7
Madrid Metropolis (MDR) 627 4941 2e4 17.5 170.8 15.3 15.7 5.4 8.7 5.5 4.8 6.1

Montreal Notre Dame (MND) 599 18390 1e3 4.0 4.3 4.5 4.3 1.9 2.4 2.3 1.9 1.8
Notre Dame (ND) 1421 70771 4e4 4.0 3.7 3.3 3.3 1.2 1.8 1.3 1.2 1.2

NYC Library (NYC) 858 8173 3e4 6.4 3e3 8.2 7.6 3.1 3.0 3.6 2.5 2.3
Piazza del Popolo (PDP) 1038 15182 6e4 8.0 19.1 8.1 7.6 7.2 5.5 15.8 5.0 4.5

Piccadilly (PIC) 3124 46754 3e4 6.5 25.2 7.0 6.7 2.2 2.6 2.4 2.3 2.1
Roman Forum (ROF) 1575 19593 5e5 22.4 33.5 15.5 15.3 4.3 8.6 8.6 4.4 5.3

Tower of London (TOL) 824 9457 8e4 28.2 58.0 22.9 24.5 8.0 10.7 8.6 6.9 6.5
Trafalgar (TFG) 7483 115052 4e4 21.4 33.3 22.4 21.3 11.7 7.6 8.3 6.9 6.2

Union Square (USQ) 1166 13460 2e4 14.5 23.0 17.1 31.7 9.2 8.5 14.3 8.1 7.9
Vienna Cathedral (VNC) 1647 27386 7e4 14.8 172.0 14.9 14.3 12.8 6.5 7.1 6.5 6.1

Yorkminster (YKM) 1834 19177 7e4 21.1 72.6 21.6 20.7 22.9 12.9 15.8 13.2 13.0

Table 2. Camera translation errors (in meters) on 1DSfM [42] datasets (|V|: number of nodes, |E|: number of edges).

(a) Madrid Metropolis (MDR) (b) Roman Forum (ROF) (c) Tower of London (TOL) (d) Vienna Cathedral (VNC)

Figure 4. Zoomed part of empirical cumulative error distribution (in meters) for camera translations obtained on 1DSfM datasets.

translations are reduced for most of the datasets.

In Fig. 4, we present the zoomed part of empirical
cumulative error distribution for camera translations, where
we analyze the behaviour of LUD, BATA and our method,
Fused-TA (please refer to the supplementary material for
full figures). For MDR, 90% of the cameras are better with
BATA and our method (Fused-TA), but LUD performs
better for the remaining 10% of the cameras. In the case
of ROF, BATA performs slightly better than our method,
up to 85% of the cameras, but the trend reverses for the
remaining cameras. For TOL, our method performs better
than BATA for up to 70% of the cameras, but BATA
estimates the remaining cameras in a better fashion. For
VNC, our method performs best up to 85% of the cameras,
and LUD’s performance is better for most of the remaining
ones. In all the cases, it can be seen that our method tries to
incorporate the benefits from both the costs and, in many
datasets, the high errors in translations for our method lie
between LUD and BATA.

Now, we study the importance of taking MAP estimate
using both the cost functions in Algo. 1. We check for two
cases, one where we consider only relaxed displacement-
based cost (erdis) by removing steps 8-11 in Algo. 1 and

in the other, we consider only relaxed direction-based cost
(erdir) by removing steps 4-7 in Algo. 1. We compare the
performance of the two cases with the complete procedure
in Algo. 1 in Table 3. It can be seen that for most of the
datasets, using only either of the cost functions for MAP
estimate leads to degradation in the performance compared
to the full Algo. 1.

Next, we use the camera motions obtained in Table 2
and carry out triangulation using Theia [39] and check
the reconstructions. At this stage, no form of bundle
adjustment is employed. In Fig. 5, we visualize the 3D
reconstructions obtained using our scheme. We also
show the bundle-adjusted solution (obtained using the
Ceres-Solver [1]) as a reference. In all these datasets, we
see that triangulation based on our solution accurately
recovers most of the reconstruction when compared with
the bundle-adjusted solution as a reference.

Finally, we compare the computation time of different
methods in Table 4. Owing to the differences between
displacement and direction-based costs, the behaviour of
RLUD and BATA are also different in each iteration. Our
approach of uncertainty-based fusion attempts to reconcile
these differences during each iteration. As a result, apart
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Figure 5. Reconstructions obtained with triangulation using our Fused-TA translation estimate (first row) compared to bundle adjustment
(second row).

Dataset LUD-only step Fused-TA BATA-only step Fused-TA
(w/o steps 8-11) (Full Algo. 1) (w/o steps 4-7) (Full Algo. 1)

Mean Errors

ALM 7.6 7.0 7.0 7.0
ELS 70.7 27.3 43.8 27.3

GMM 45.7 44.4 42.2 44.4
MDR 25.8 15.7 15.1 15.7
MND 3.5 4.3 4.2 4.3
NYC 7.6 7.6 7.2 7.6
ND 4.1 3.3 3.3 3.3
PDP 7.5 7.6 7.8 7.6
PIC 10.5 6.7 6.7 6.7
ROF 8e5 15.3 17.1 15.3
TOL 26.5 24.5 25.2 24.5
TFG 22.8 21.3 22.0 21.3
USQ 39.8 31.7 14.8 31.7
VNC 14.0 14.3 15.1 14.3
YKM 20.3 20.7 25.5 20.7

Median Errors

ALM 2.8 2.4 2.4 2.4
ELS 12.1 17.5 24.9 17.5

GMM 29.9 27.7 25.1 27.7
MDR 13.3 6.1 5.6 6.1
MND 1.9 1.8 1.8 1.8
NYC 2.8 2.3 2.6 2.3
ND 1.7 1.2 1.2 1.2
PDP 5.1 4.5 5.1 4.5
PIC 6.1 2.1 2.3 2.1
ROF 29.5 5.3 5.3 5.3
TOL 7.8 6.5 6.7 6.5
TFG 9.9 6.2 7.0 6.2
USQ 4.9 7.9 7.8 7.9
VNC 6.8 6.1 6.9 6.1
YKM 16.8 13.0 19.9 13.0

Table 3. Camera translation errors (in meters) only considering
particular costs in Algo. 1 vs full Algo. 1. Entries marked in bold
show improvement using a single cost vs full Algo. 1 and not com-
paring all variants.

from the cost of computing both RLUD and BATA esti-
mates in every iteration, our approach needs more iterations
to converge than RLUD or BATA. The result is an increase

Dataset RLUD BATA Fused-TA

ALM 10 21 39
ELS 6 14 25

GMM 8 18 31
MDR 3 8 12
MND 8 21 34
ND 39 75 125

NYC 5 12 21
PDP 8 21 33
PIC 45 83 152
ROF 13 31 52
TOL 6 14 23
TFG 167 357 610
USQ 8 17 30
VNC 15 35 56
YKM 8 19 32

Table 4. Computation time (in seconds) for different schemes on
1DSfM datasets.

in the overall computation time of Fused-TA.

6. Conclusion

In this paper, we discuss the relative behaviour of the
relaxed direction and displacement-based cost functions in
translation averaging. We argue that translation estimation
can benefit from a careful consideration of the two ap-
proaches in a principled manner by recursively fusing the
estimates based on their uncertainties. The merits of our
proposed approach are detailed via experiments using both
synthetic and real datasets.
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