

Adaptive Annealing for Robust Geometric Estimation

Chitturi Sidhartha, Lalit Manam and Venu Madhav Govindu

Time (in ms.) \downarrow

Graduated Non-Convexity (GNC)

- Algorithm: Iteratively Reweighted least squares (IRLS).
- GNC used to mitigate convergence to poor local minima caused by IRLS.
- Minimize a sequence of successively harder costs, $\rho_{\sigma}(\cdot)$, $\sigma = \sigma_0 > \sigma_1 > \sigma_2 > \cdots > \sigma_{min}$.
- $\gamma_k = rac{\sigma_{k+1}}{\sigma_k}$
- Fixed annealing: γ_k =constant $\forall k$.

Figure: GNC Flowchart.

Properties: Adaptive Annealing vs Fixed Annealing

Table: Impact of different annealing strategies.

Adaptive Strategy to Find σ_{k+1} ($\equiv \gamma_k$)

- Given the current solution x_k^* , choose σ_{k+1} as: $\sigma_{k+1} = \min_{\sigma \leq \sigma_k} \left\{ \sigma \mid \lambda_{min} \left(\mathbf{H}_{x_k^*}(\sigma) \right) > \lambda_T > 0 \right\}$ (1)
- Given the least squares cost's gradient (g_{LSQ}) and Hessian (H_{LSQ}) ,

$$H(\sigma) = \sum_{i=1}^{n} \left(-l_i \frac{\mathbf{g}_{LSQ,i} \mathbf{g}_{LSQ,i}^{\top}}{\|\mathbf{r}_i\|^2} + m_i \mathbf{H}_{LSQ,i} \right),$$
where $l_i = \frac{\rho'(\|\mathbf{r}_i\|)}{\|\mathbf{r}_i\|} - \rho''(\|\mathbf{r}_i\|), m_i = \frac{\rho'(\|\mathbf{r}_i\|)}{\|\mathbf{r}_i\|}$

- $\lambda_{min}(H_{x_k^*}(\sigma))$ is monotonic in $\sigma \Rightarrow$ binary search is used to find σ_{k+1} in Eqn. 1.
- Approximate l_i 's and m_i 's used to make the Hessian (H) amenable for cheap evaluations of $\lambda_{min}(H)$.

Algorithm 1: Robust M-estimation with Adaptive GNC (GNCp)

Input: Observations $\{o_i\}$; residual function $r_i(x) = g(x, o_i)$; σ_{final} Output: Optimal x

1 Initialization: k = 0, $\sigma = \sigma_0$, x_0 (random)
2 while $\sigma_k \ge \sigma_{final}$ do
3 $r_i = g(x_k, o_i)$

4 $\phi_i = \frac{1}{\left(1 + \frac{\|r_i\|^2}{\sigma_k^2}\right)^2}$ /* Solve for x_{k+1} using IRLS

*/

5 $|\mathbf{x}_{k+1}| = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^{\infty} \phi_i ||\mathbf{r}_i(\mathbf{x})||^2$ 6 Obtain $\mathbf{H}(\sigma)$ using Eqn. 2

Perform binary search on $\lambda_{min}(H)$ to obtain σ_{k+1} k=k+1

Conclusion

Results on Real Data

hotel3

study

85.2

95.3

73.5

(a) SE3Reg

Success %

• We propose a principled way to adaptively anneal the scale in Graduated Non-Convexity (GNC) by tracking the positive definiteness of the Hessian matrix of the cost function.

Figure: Two point clouds (red and green) with a low overlap in the MIT Lab sequence of 3D Match dataset.

(b) TEASER++

3DMatch FGR [5] SE3Reg [1] TEASER++ [3] GNCp (Ours) FGR [5] SE3Reg [1] TEASER++ [3] GNCp (Ours)

88.9

85.6

Table: Results on 3D Match dataset [4] and KITTI [2] datasets.

55.2

195

(c) GNCp (Ours)

• We demonstrate our approach on pairwise registration of 3D point clouds. Our method yields superior results compared to the state-of-the-art both in accuracy and efficiency.

Acknowledgments

Chitturi Sidhartha and Lalit Manam are supported by the Prime Minister's Research Fellowship, Government of India. This research was supported in part by a Core Research Grant from the Department of Science and Technology, Government of India.

References

- [1] Bhattacharya, U., Govindu, V.M.: Efficient and robust registration on the 3d special euclidean group. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5885–5894 (2019)
- [2] Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern recognition. pp. 3354–3361. IEEE (2012)
- [3] Yang, H., Shi, J., Carlone, L.: Teaser: Fast and certifiable point cloud registration. IEEE Transactions on Robotics 37(2), 314–333 (2020)
- [4] Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3dmatch: Learning the matching of local 3d geometry in range scans. In: CVPR. vol. 1, p. 4 (2017)
- [5] Zhou, Q.Y., Park, J., Koltun, V.: Fast global registration. In: European conference on computer vision. pp. 766–782. Springer (2016)

Illustration on Pairwise 3D Registration

Given correspondences $\{a_i, b_i\}$ between two unaligned 3D scans, find the transformation R, t that aligns the scans.

Optimization problem:
$$\min_{(R,t)} \sum_{i=1}^{N} \rho_{\sigma}(\|\mathbf{a}_i - R\mathbf{b}_i - \mathbf{t}\|)$$
 (4)

9 end

Results on Synthetic Data

Mean Rotation Errors (deg) ↓					Mean Translation Errors $(\times 10^{-3})\downarrow$			
Dataset I	FGR [5]	SE3Reg [1]	TEASER++ [3]	GNCp(Ours)	FGR [5]	SE3Reg [1]	TEASER++	[3] GNCp(Ours)
armadillo	0.89	1.12	13.87	0.79	16.68	48.06	106.59	9.27
bunny	0.93	1.27	13.63	0.81	14.53	46.76	152.33	9.18
buddha	1.22	1.32	22.32	1.02	18.97	45.57	148.82	11.09
dragon	0.88	1.05	13.05	0.76	15.89	47.21	119.91	9.08

Table: Mean rotation and translation errors on synthetic datasets (N=10000, high noise level) for 50% outliers.

(d) Ground Truth