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Abstract

Rotation averaging is the problem of recovering 3D cam-
era rotations from a number of pairwise relative rotation
estimates. The state-of-the-art method of [5] involves ro-
bust averaging in the Lie-algebra of 3D rotations using an
ℓ 1

2
loss function which is carried out using an iteratively

reweighted least squares (IRLS) minimization. In this pa-
per we argue that the performance of IRLS-based rotation
averaging is intimately connected with two factors: a) the
nature of the robust loss function used; and b) the initial-
ization. We make two contributions. Firstly, we analyse
the pitfalls associated with the unbounded weights in IRLS
minimization of ℓp(0 < p < 2) loss functions in the context
of rotation averaging. We elucidate the design choices and
modifications implicit to the state-of-the-art method of [5]
that overcomes these problems. Secondly, we argue that the
ℓ 1

2
-based IRLS method is inflexible in adapting to the spe-

cific noise characteristics of individual datasets, leading to
poorer performance. We remedy this limitation by means of
a Geman-McClure loss function embedded in a graduated
optimization framework. We present results on a number of
large-scale real-world datasets to demonstrate that our pro-
posed method outperforms state-of-the-art methods in terms
of both efficiency and accuracy.

1. Introduction
Global methods are desirable for solving large-scale

structure-from-motion (SfM) problems owing to their
greater speed and completeness in reconstruction compared
to incremental methods [27, 32, 25]. Rotation Averaging
(RA) plays an important role in such global methods by
providing a good initialization to Bundle-adjustment [28], a
highly non-linear, non-convex optimization problem, which
is the backbone of any SfM solution.

Consider a viewgraph G = {V, E} with N = |V| ver-
tices and M = |E| edges, where vertices represent cam-
era rotations and edges represent relative rotations between
their corresponding vertices. Given relative rotation esti-

mates {Rij}(i,j)∈E for each edge (i, j) ∈ E , the problem
of rotation averaging is to recover the global camera rota-
tions, i.e. the rotations RV = {R1, · · · ,RN} where Ri is
the estimated 3D rotation of camera i ∈ V (w.r.t a global
frame of reference). Rotation averaging uses the observa-
tion that relates relative rotations (edges) to absolute cam-
era rotations (vertices), i.e. Rij = RjR

−1
i . All real-world

datasets tend to have some corrupted Rij’s due to a number
of reasons including incorrect feature matches, occlusions,
repeated structures in scenes, symmetries etc. Robustness to
such outliers is a key consideration for all rotation averag-
ing methods. The most commonly used rotation averaging
method is [5] that uses an ℓ 1

2
loss function for robustness

and optimizes using Iteratively Reweighted Least Squares
(IRLS). While the ℓ 1

2
based IRLS method of [5] achieves

state-of-the-art in speed and accuracy, in this paper, we ar-
gue that:

1. All ℓp (0<p<2) loss functions suffer from the draw-
back of unbounded weights in IRLS. While this was
implicitly addressed in [5] by clamping large weights,
as we will discuss in Sec. 4, such clamping impacts the
quality of the estimates. Moreover, the inability of ℓp
loss functions to adapt to the varying noise character-
istics leads to reduced performance.

2. The limitations of the ℓ 1
2

-based method of [5] can be
overcome by a graduated optimization method using
the Geman-McClure loss function. We show in Sec. 6
that our proposed graduated method can outperform
the ℓ 1

2
-based method of [5] and other state-of-the-art

approaches both in terms of speed and accuracy.

2. Related Work
The body of work on rotation averaging is fairly exten-

sive and in this section we only discuss papers of relevance
to our approach. 3D rotations form a Lie group known as
the Special Orthogonal group R ∈ SO(3). We can classify
methods based on whether they solve the rotation averaging
problem while respecting the geometry of SO(3) (intrinsic



methods) or whether they relax the geometric constraints
and project onto SO(3) after optimization (typically) a con-
vex form (extrinsic methods).

Intrinsic Methods: Govindu [13] exploits the Lie-group
structure of SO(3) for the first time in RA. In [14], robust-
ness is embedded by taking a random sampling consensus
(RANSAC) approach for removal of outliers in the pairwise
relative motion estimates. Hartley et al. [16] solve an ℓ1 cost
of RA with an intrinsic metric by iteratively finding the ge-
ometric median on the tangent spaces of SO(3) using the
Weiszfeld algorithm. Chatterjee and Govindu [4] propose
to solve a robust cost of RA using IRLS technique on the
Lie algebra (tangent space) of SO(3). They optimize an ℓ1
based cost to serve as an initialization to IRLS. In [5], an
ℓ 1

2
-based IRLS optimization is proposed as the best empiri-

cal choice of loss function. Shi and Lerman [26] propose a
message passing algorithm to estimate the noise levels and
detect potential outliers in the relative rotation estimates and
use it in conjunction with the residuals in the IRLS tech-
nique proposed in [4].

Extrinsic Methods: Govindu [12] formulate RA as a lin-
ear least squares problem based on the quaternion represen-
tation of rotations. Martinec and Pajdla [21] perform linear
least squares by relaxing the orthogonality constraints of the
rotations, then reproject them back onto the space of rota-
tions. Crandall et al. [6] model constraints between pairs of
cameras as a Markov Random field (MRF) and use a combi-
nation of discrete and continuous optimization to solve for
poses. Fredriksson and Olsson [11] use Lagrangian dual-
ity to give a certificate for global optimality to the problem
considered in [12] in a moderate noise scenario. Eriksson
et al. [10] use duality and spectral graph theory to obtain
certifiably global solutions to RA with the chordal metric.
Wang et al. [30] use a robust ℓ1 cost with chordal distance
metric, derive a convex relaxation of the problem and solve
it with an alternating direction method. Arrigoni et al. [1]
formulate RA as a low-rank and sparse matrix decomposi-
tion problem. Dellaert et al. [7] use a semidefinite relax-
ation of a least squares cost function with chordal metric.
They solve the relaxed problem on higher dimensional ro-
tation groups SO(p) starting from p = 3 and increase the
value of p until convergence.

Robust cost Optimization: We attempt only to give a
glimpse of the vast literature on the optimization of robust
cost functions of the form

∑n
i=1 ρ (xi(θ)) [19] which are

of relevance in our work. We consider three types of meth-
ods: Direct, Lifting, Graduated optimization. Direct meth-
ods such as IRLS [19, 15], Triggs correction [28], square-
rooting of kernel [9] operate explicitly on the cost func-
tion, make a quadratic approximation and reduce it to a
non-linear least squares problem, then solve it using Gauss-
Newton or Levenberg-Marquardt method. These methods
are prone to settling at poor local minima. Lifting based

Name ρ(x) ψ(x) ϕ(x)

ℓ2 x2/2 x 1
ℓp |x|p/p sign(x)|x|p−1 |x|p−2

Geman-
McClure

σ2x2

2(x2+σ2)
σ4x

(σ2+x2)2
σ4

(σ2+x2)2

Table 1: Loss functions

approaches [38, 34, 35] modify the actual cost function by
adding auxiliary variables called weights (ϕi) which signify
the inlier probability for each observation xi. The optimiza-
tion is carried out jointly over the actual variables (θ) and
the lifting variables (ϕi’s). It is similar to a line-process
formulation which is shown to be equivalent to the actual
robust cost function [3]. But the lifting based methods
are sensitive to the initialization of ϕi’s [36, 37]. Grad-
uated optimization methods [36] solve a series of objec-
tive functions which are successively better (smoother) ap-
proximations of the original cost function and hence eas-
ier to optimize. Graduated non-convexity [33, 23], anneal-
ing [24, 29, 2], homotopy optimization methods [8], con-
tinuation methods [22] fall under this category. Depending
on the cost function, these methods generally reach a good
local minima, if not the global minima.

3. Mathematical Background
In this section we provide a basic statement of the math-

ematical concepts that will be used in the remainder of the
paper, i.e. the IRLS method, properties of 3D rotations,
statement of the rotation averaging problem and the opti-
mization step in [5]. The notation presented in this section
will be used throughout the paper.

3.1. Iteratively Reweighted Least Squares (IRLS)

Consider an overdetermined system of m linear equa-
tions a⊤

k l = ck where k = 1, . . . ,m, where the unknowns
to be estimated are l ∈ Rn. For an overdetermined system
of equations, m > n. Consider the following cost func-
tion:

F =

m∑
k=1

ρ(|a⊤
k l− ck|) (1)

where ρ(·) is a robust loss function chosen to mitigate the
effect of noise and outliers. |a⊤

k l − ck| are referred to as
residuals. We wish to minimize the cost F . Assuming
|a⊤
k l− ck| ≠ 0 ∀ k, taking the gradient we obtain,

∇F =

m∑
k=1

ρ′(|a⊤
k l− ck|)ak

a⊤
k l− ck
|a⊤
k l− ck|

(2)

The influence and the weight functions are defined as
ψ(x) = ρ′(x) and ϕ(x) = ψ(x)

x respectively. Table 1



shows the corresponding functions of relevance to this pa-
per. Thus,

∇F =

m∑
k=1

ϕ(|a⊤
k l− ck|)ak(a⊤

k l− ck) (3)

Treating ϕ(|a⊤
k l − ck|) = ϕk as a constant, solving

∇F = 0 is equivalent to solving a weighted least squares
problem given by,

argmin
l

m∑
k=1

ϕk|a⊤
k l− ck|2 (4)

If A is a matrix obtained by stacking a⊤
k as rows, Φ

is a diagonal matrix with ϕk as its diagonal entries, c =
[c1, . . . , cm]⊤, then the solution to Eqn. 4 is given by,

l =
(
A⊤ΦA

)−1

A⊤Φc (5)

We note here that for the problem of rotation averaging, the
matrix A is the incidence matrix of the viewgraph G and
A⊤ΦA is the weighted Laplacian.

The standard IRLS [18] technique can be summarized as
follows: in every iteration, ϕk’s are computed with a cur-
rent estimate of l and the weighted least squares problem in
Eqn. 4 is solved to obtain a new estimate of l, and this is re-
peated until convergence (i.e. |∆l| < ϵ). We refer the reader
to Table 1 in [5] for a comprehensive list of robust loss
functions. In this paper, we deal only with lp (0<p<2) and
the Geman-McClure (GM) loss functions (Table 1). Hence-
forth, whenever ℓp is used, it is assumed that 0 < p < 2,
unless stated otherwise.

3.2. Representation of 3D Rotations

Every 3 × 3 rotation matrix R satisfies the constraints
RTR = I 3 and det(R) = +1 and all such rotations form
a Lie group, i.e. the Special Orthogonal group SO(3). The
local neighbourhood of an element R ∈ SO(3) is described
by its Lie algebra, i.e. the skew-symmetric form [ω]× ∈
so(3) where ω is the axis-angle representation of rotation
R. Elements in the Lie group (R) and their corresponding
Lie algebra [ω]× are related as

R = exp([ω]×), [ω]× = log(R) (6)

A summary of various representations of 3D rotations
can be found in Section 3 in [17] and more details on the
group properties of rotations can be found in [13, 20]. The
intrinsic or geodesic distance between two 3D rotations R1

and R2 is given as d(R1,R2) = 1√
2
∥log(R1R

−1
2 )∥F ,

whereas extrinsic methods typically use the chordal dis-
tance dchordal(R1,R2) = ∥R1 −R2∥F . In this work we
only use the intrinsic distance. Henceforth we refer to the
axis-angle representation of R as ω(R) and the rotation
matrix representation of ω as R(ω).

3.3. Rotation Averaging

As stated in Sec. 1, rotation averaging methods use all
available relative rotations {Rij} between pairs of cameras
to solve for absolute camera rotations for all cameras, i.e.
RV = {R1, · · · ,RN}. In the presence of noise or outliers,
the relationship Rij ̸= RjR

−1
i . Hence the problem of ro-

tation averaging is one of finding the best possible fit or ex-
planation of all the observed {Rij} in terms of the camera
rotations RV = {R1, · · · ,RN}. We can use the intrin-
sic distance metric on SO(3) stated in Sec. 3.2 to evaluate
the quality of the fit for each individual edge. By taking all
edge relationships and accounting for the presence of noise
and outliers using a loss function ρ(·), we define rotation
averaging as the problem of optimizing the cost function

RV = argmin
{R1,R2,··· ,RN}

∑
(i,j)∈E

ρ
(
d
(
Rij ,RjR

−1
i

))
(7)

The algorithm to solve the rotation averaging problem
of (7) can be briefly sketched as follows: At any iteration
we evaluate the residual or difference in fitting between
observed relative rotations Rij and the current estimate
RjR

−1
i , i.e. R−1

j RijRi. We collect their axis-angle forms
(for all edges in E) into a single vector denoted ∆ΩE .
Further, we denote the angle updates for each camera
i ∈ V as ∆ωi (or ω(∆Ri)) and collect all of them into
an update vector ∆ΩV i.e. ∆ΩV = [∆ωT1 , · · · ,∆ωTN ].
Thus the averaging problem becomes one of updating all
camera rotations Ri by solving the weighted least squares
problem

(
ATΦA

)
∆ΩV = ATΦ∆ΩE where Φ is the

diagonal matrix of weights which is dependent on ρ(·)
and the residuals. We update Ri ← Ri exp([∆ωi]×)
where ∆ωi is obtained from ∆ΩV . This is repeated till
convergence. The reader is referred to [13, 4, 5] for more
details. After an extensive evaluation, [5] chose the loss
function ρ(x) = 2|x|

1
2 (denoted ℓ 1

2
) for its accuracy on

real-world datasets. In Sec. 4 we discuss the limitations
of the ℓ 1

2
based approach of [5] and present our proposed

solution that overcomes these limitations. In the remainder
of this section we present a few preliminaries to keep our
discussion self-contained.

Datasets: We demonstrate our findings on the com-
monly used large-scale 1DSfM datasets [31] taken
from http://www.cs.cornell.edu/projects/
1dsfm/ whereas the San Francisco and Artsquad datasets
of [6] are taken from http://www.ee.iisc.ac.
in/labs/cvl/research/rotaveraging/ and we
follow the same abbreviations as in [5].

Rotation Error Measures: When we want to com-
pare two sets of rotations (say an estimated set of cam-
eras with ground truth), we need to align them to the same
frame of reference. Two sets of rotations {Ri}i=1...N and



(a) Loss (ρ(x))

(b) Weight (ϕ(x))

(c) Clipped Weight for ℓ 1
2

(ϕ(x))

Figure 1: Comparison of loss and weight functions for ℓ 1
2

and Geman-McClure functions.

{Q i}i=1...N are compared after estimating the best aligning
rotation S which minimizes the error

∑N
i=1 d

2(Ri,SQ i).
After alignment we can compute the distances ei =
d(Ri,SQi),∀i = 1, · · · , N where d(., .) is the intrinsic
metric on SO(3) stated in Sec. 3.2. The mean and median
errors of an estimated set of rotations with respect to ground
truth (after alignment) is the mean and median of set {ei}
and is denoted as ē and ẽ respectively. Finally, the number
of iterations to convergence is denoted by Niter.

4. Analysis of ℓ 1
2

Rotation Averaging

In this section we argue that for rotation averaging based
on IRLS minimization, the performance in terms of speed
and accuracy is intimately connected with both the nature
of the loss function ρ(·) in Eqn. 7 and the initialization used.

We recall that in using IRLS minimization, at any point in
the optimization (i.e. at any iteration), the rotation updates
are estimated by solving a weighted least squares problem
in the Lie algebra, i.e.

(
ATΦA

)
∆ΩV = ATΦ∆ΩE .

Here the individual weights ϕ(.) in matrix Φ depend on
the choice of the loss function as indicated in Table 1 and
illustrated in Fig. 1a and 1b. The corresponding weights
indicate the relative confidence that each observation is an
inlier (high for inliers and low for outliers). Thus, the least
squares approach ρ(x) = x2 is not robust since all obser-
vations (including outliers) are given uniform weightage.
In the state-of-the-art method of [5], this non-robustness
is mitigated by the use of ℓ 1

2
as the loss function which is

robust to outliers, as are all loss functions ℓp (0 < p < 2)
to different degrees. However, as can be seen in Fig. 1b, the
weights of ℓ 1

2
are unbounded and grow rapidly to∞ as the

error approaches zero. This has major implications for the
performance of ℓ 1

2
-based rotation averaging.

All Lie-algebraic rotation averaging methods are local
optimizations that require a reasonable initial guess for
convergence to a good solution. If an initialization (say a
random initialization) is far from the final answer, the IRLS
weights are non-informative and the algorithm may fail to
converge to a good solution. Moreover an initialization that
is far from the final answer will need a large number of
iterations (slow convergence). A remedy to this problem
would be to choose a reasonably good initialization which
will necessarily have to be derived from the specific dataset
instance in question, but also have to be computationally
inexpensive. An intuitive answer is to construct an initial
estimate (Rinit) of the rotations of all cameras in V , i.e.
{RV} using a spanning tree (ST) from G. However, it will
be immediately realised that for edges (i, j) in this ST,
the fitting error will always be zero and the corresponding
IRLS weights would be undefined (or ∞ using a logical
sleight of hand). This will prevent the estimate {RV} from
moving away from Rinit and the optimization routine
would terminate at the initialization.

Practically the problem of undefined (or unbounded)
weights is overcome by regularization i.e. by clipping the
weights ϕ to a maximum value of wmax. Hence, we are
effectively changing the ℓ 1

2
loss function and the effective

weight function is not the ℓ 1
2

weight of Fig. 1b but the one
illustrated in Fig. 1c which we denote as the clipped-ℓ 1

2

function. In the implementation of [5] that is widely
used1, wmax = 104. Even then, with a ST initialization,
the optimization terminates at the initialization itself in
most cases. This problem could be potentially remedied
by using an initial guess that does not result in an exact

1Available at http://www.ee.iisc.ac.in/labs/cvl/
research/rotaveraging



fit with respect to most of the edges. Indeed, in [5] the
ℓ 1

2
method is initialized using the solution of another ℓ1

rotation averaging routine (denoted L1RA). However,
L1RA entails additional computational cost. Also, there
are two important consequences of using the clipped-ℓ 1

2

function. Within the range of x ∈ [−∆,∆] indicated in
Fig. 1c, the weights for clipped-ℓ 1

2
are constant, i.e. all of

these errors are treated as inliers in a least squares sense.
Thus, when wmax is set to a high enough value (as in this
case of [5] where wmax = 104), all Rij observations that
result in low errors end up being assigned a high weightage.
Thus, the gradient estimate is biased by these high weight
observations and convergence is slowed down. Setting
the threshold to lower wmax does not fully allievate such
problems as then the range of inliers (−∆,∆) is broader
and we practically end up doing least squares which is
non-robust. In summary, while a clipped-ℓ 1

2
function

avoids unbounded weights, the act of clipping the weights
can cause the method to be slowed down and potentially
reduce accuracy.

We emphasise that the problems associated with high
weights (upto wmax in case of [5]) are at play not only
when initialised by a spanning tree but also with a non-ST
(where the fitting error on the edges of the viewgraph is
not all zero) initialization. In practice it is observed that a
subset of edges with high weights (weights > wmax) arise
during the trajectory of optimization irrespective of the
initialization, and from then on, the number of edges with
high weights increase significantly with every iteration.
This is because the optimization routine is “dragged”
towards the subset of edges where the high weights arise,
thus biasing the final estimate, and hence “averaging” is not
carried out in the true sense. We demonstrate the effect on
2 large datasets (Artsquad, Trafalgar from 1DSFM [31]).
We take an L1RA initialization and provide it to ℓ 1

2
and

plot the number of edges with high weights (weights
> wmax = 1e+4) or equivalently edges with almost zero
fitting error (fitting error < 2.7e−4◦) in every iteration
starting from the 6th iteration. In the first few iterations,
because of the nature of initialization, there are not many
edges with high weights. However, from Fig. 2 we can
observe that the optimization routine gets biased by the
subset of edges with high weights with increase in the
number of iterations. On the other hand, our proposed
method of Sec. 5 produces significantly fewer such edges
(30 and 449 edges for Artsquad and Trafalgar respectively)
and also gives significantly better accuracy and speed.

An additional drawback of using a clipped-ℓ 1
2

loss
function is that when the weights are below wmax their
relative importance is governed by a fixed weighting
function corresponding to ℓ 1

2
. Thus, the “bandwidth” of the

Figure 2: Behaviour of optimization with ℓ 1
2

with L1RA
initialization. The number of edges with high weights
(equivalently almost zero fitting error) increase significantly
as the optimization progresses.

weight function for clipped-ℓ 1
2

is effectively fixed as can be
seen in Fig. 1c and cannot be modified in accordance with
the noise characterstics of individual datasets.

In the first version of robust rotation averaging proposed
by Chatterjee and Govindu [4], the authors had used a
Geman-McClure loss function (with a fixed σ = 5◦). Sub-
sequently, they used a clipped-ℓ 1

2
loss function in [5] and ar-

gued that it was superior to the Geman-McClure loss func-
tion in [4]. However, we argue that the relatively poor per-
formance of Geman McClure in [4, 5] can be mitigated by
embedding it within a graduated optimization framework
which can be shown to achieve superior speed and accu-
racy compared to the state-of-the-art approach of [5]. As
can be seen in Fig. 1c the weights for the Geman-McClure
loss function always remain bounded (scaled to wmax for
illustrative purposes). Moreover, as indicated by the two
illustrative examples with different σ, we can effectively
control the bandwidth of the Geman-McClure weight func-
tion in accordance with the statistics of the residual errors.
In Sec. 5 we present our proposed graduated optimization
method using the Geman-McClure loss function.

5. Proposed Method

In this section, based on our analysis in Sec. 4, we pro-
pose a graduated optimization scheme [36] (GOM) using
the Geman-McClure loss function in order to minimize the
cost function given by (7). At every iteration, we minimize
the cost function of the form:

ρ(θ) =
∑

(i,j)∈E

ρ (∥rij(θ)∥) (8)



In our particular problem, θ = ΩV and rij(θ) =
ω(R−1(∆ωj)R

−1
j RijRiR(∆ωi)). Graduated optimiza-

tion methods solve a sequence of objective functions ρk(θ)
starting from k = kmax to k = 0 successively where the so-
lution of ρk+1 is used as initialization to solve for ρk. ρk’s
are chosen such that ρk+1 is a smoother approximation of
ρk and is easier to optimize than ρk and eventually should
approximate the original cost function, i.e., ρ0(θ) = ρ(θ).
As in [36], the sequence of ρk’s are constructed as:

ρk(r) := s2kρ (r/sk) (9)

ρk(θ) =
∑

(i,j)∈E

ρk (∥rij(θ)∥) (10)

where s0 = 1 and sk < sk+1. We call our proposed method
Rotation Averaging with Graduated Optimization (GRA)
which is outlined in Algorithm 1.

Our choice of ρ is the Geman-McClure loss function.
Thus the loss function at the kth level of optimization is
given as:

ρk(r) := s2kρ (r/sk) =
s2kσ

2
0r

2

2(r2 + s2kσ
2
0)

(11)

Effectively, ρk(r) corresponds to a GM loss with the pa-
rameter being σk = skσ0 which implies that σk+1

σk
= sk+1

sk
.

Instead of implementing with a fixed value of kmax, we
choose an initial value for the parameter σ in the Geman-
McClure loss heuristically and with a chosen fixed value
of s = sk+1

sk
for all k, we iterate the optimization until σ

reaches a minimum threshold σ0. We use IRLS with Gauss-
Newton method to minimize each of ρk(θ). We choose the
relative stopping criterion as in [36] given by

ρk∆ :=
∆k

≤ −∆k
>

∆k
≤ +∆k

>

=
ρk(θ−)− ρk (θ+)

∆k
≤ +∆k

>

≤ η (12)

where in
I> :=

{
(i, j) ∈ E : ∥rij

(
θ+

)
∥ > ∥rij(θ−)∥

}
(13)

ρk>(θ) :=
∑

(i,j)∈I>

ρk (∥rij(θ)∥) , (14)

ρk≤(θ) :=
∑

(i,j)/∈I>

ρk (∥rij(θ)∥) (15)

∆k
≤ := ρk≤(θ

−)− ρk≤
(
θ+

)
,∆k

> := ρk>
(
θ+

)
− ρk>(θ

−)

(16)

where θ+ and θ− are the current and previous solutions.
Thus, whenever ρk∆ ≤ η is satisfied, we graduate from k+1
to k in the optimization routine, i.e. we anneal the σ param-
eter in the Geman-McClure loss.

Our proposed method can be intuitively interpreted
as follows: since an initial guess is relatively far from
the final answer, the initial residual errors are large. If
the Geman-McClure σ is relatively smaller than the error
magnitudes, the weighting function ϕ(x) = σ4

(σ2+x2)2

would tend to zero, leading to poor results. Instead,
initially we should remain agnostic about inlier/outlier
classification and correspondingly σ should be large. As
we progressively move towards convergence, the individual
fitting or residual errors for edges are more indicative of
an inlier/outlier classification and therefore we should
progressively make σ smaller to capture our belief in the
relative weights of individual edges.

The GRA method is initialized with rotations using a
random spanning tree. We emphasise that unlike the case
with the original ℓ 1

2
method, the weights of the Geman-

McClure loss function are always bounded. Hence GRA
initialized with an ST solution does not suffer from the de-
generacies associated with extremely high weights as in the
case of ℓ 1

2
. The key to obtaining good performance us-

ing GRA is to choose appropriate parameters of the initial
value of σ in the Geman-McClure loss, the value of sk and
η in the stopping criterion. In our case, in Algorithm 1,
for the first iteration, we choose σ heuristically based on
the statistics of the residuals of the edges for a given ini-
tialization. We choose σ such that the knee or the inflec-
tion point (for Geman-McClure it is GMknee = σ/

√
3) of

the loss function is equal to 95th percentile of the residu-
als (Lines 8 − 9 in Algorithm 1). We choose sk = 3k

or equivalently s = sk+1

sk
= 3. The minimum threshold

σ0 is chosen to be 0.5◦. The parameter η is also chosen
based on the percentile of the residuals lying within the
inflection point of the Geman-McClure loss function. We
choose η = [0.5, 0.25, 0.125, 0.1] corresponding to 95th,
90th, 80th percentiles of the residuals. For e.g., η = 0.5
and η = 0.1 when more than 95% and less than 80% of
the residuals respectively lie within the inflection point of
Geman-McClure loss. This is because initially, when the
importance of the edges (inliers/outliers) is unknown, we
don’t want the optimization to be strict, hence we choose η
liberally in the initial stages. The parameter τ in Line 12 is
chosen as max {σ, 0.08} so that any weight corresponding
to a residual above τ radians is diminished by a value of
t = 100. We note that the same parameter settings are used
for all the datasets. In our experiments, we observe that the
value of t does not matter very much as long as t ≥ 2.

6. Results
In this section we demonstrate the efficacy of our

proposed GRA method on real-world datasets and compare
with the state-of-the-art approaches. For comparing with
the method of Chatterjee and Govindu [5] we use their
implementation which runs an ℓ1 cost for 5 iterations
(L1RA) followed by an IRLS-based optimization using
ℓ 1

2
loss function (i.e. the clipped-ℓ 1

2
loss function as

discussed in Sec. 4). We refer to this method as L1RA+ℓ 1
2

.
In addition we compare with two other state-of-the-art



Algorithm 1: GRA
Input: {Rij}(i,j)∈E , σ0, Nmax
Output: RV = {Ri}i=1..N

1 Initialization: Set RV = RV,span, Niter = 1,
Ω−

V = 0
2 while σ ≥ σ0 AND Niter ≤ Nmax do
3 ∆ωij ← ω(R−1

j RijRi)

4 θij ← ∥∆ωij∥
5 Concatenate ∆ωij’s to obtain ∆ΩE
6 if Niter == 1 then
7 Concatenate θij’s to obtain Θ
8 GMknee = prctile(Θ, 95)

9 σ ←
√
3GMknee

10 end
11 ϕij = σ2/(σ2 + θ2ij) // Weights

12 ϕij ← ϕij/t ∀ {(i, j) ∈ E : θij ≥ τ}
13 Form Φ with ϕij’s as diagonal entries

14 ∆Ω+
V ← −

(
A⊤ΦA

)−1

A⊤Φ∆ΩE // IRLS

15 Ri ← RiR(∆ωi) ∀i ∈ {1, · · · , N}

16 Compute ρk∆ =
ρk(Ω−

V )−ρk(Ω+
V)

∆k
≤+∆k

>
.

17 if ρk∆ ≤ η then
18 σ = σ/s
19 end
20 Ω−

V ← Ω+
V

21 Niter ← Niter + 1

22 end

methods that solve for rotation averaging in different ways.
Shonan Averaging (Shonan) by Dellaert et al. [7] takes a
semidefinite relaxation of a non-robust least squares cost
function based on chordal distance, then builds a Rie-
mannian staircase to solve the relaxed problem on higher
dimensional rotation groups SO(p) (p ≥ 3). They prove
that under mild assumptions of noise, the solution of the
semidefinite relaxation is the global minimizer of the actual
robust extrinsic cost. Shi and Lerman [26] use a Message
Passing Least Squares (MPLS) framework wherein the
noise levels of Rij’s are estimated using a message passing
algorithm based on cycle-consistency loss. These estimates
are used in combination with the residuals for calculating
the weights ϕij’s. All the implementations are available
online on the webpages of the respective authors. Finally,
all the experiments are conducted on a machine with Intel
3GHz i7-5960 octa core CPU and 32GB RAM and our
methods are implemented in MATLAB.

Variants of GRA: We introduce two variants of GRA.
The first (GRA1) is the vanilla version of GRA discussed
in Algorithm 1 where a random spanning tree (STrandom)

is taken as the initialization. However, we note that often
the number of feature correspondences between an image
pair (i, j) carries useful information on the reliability of the
estimated relative rotations Rij . Therefore, in the second
variant (GRAfeat), we use an initialization corresponding
to a maximal spanning tree (STfeat) based on edge weights
equal to the number of matched features for each edge in
the viewgraph G.

6.1. Comparison with State-of-the-art Methods

The performance of L1RA+ℓ 1
2

[5], Shonan [7],
MPLS [26] and our methods GRA1 and GRAfeat on the
datasets is shown in Table 2. Since the MPLS method
of [26] is a randomized procedure, we carry out 50 trials
and report the average of the mean and median errors ob-
tained. It should be noted that this is favourable towards the
MPLS method as in some cases the variance of the errors is
quite significant. We also note that while we report the er-
rors for MPLS averaged over 50 trials, the timing reported
in Table 3 is for a single trial.

We observe that GRAfeat performs better on 9 datasets,
MPLS on 3 datasets and GRA1 on 2 datasets, L1RA+ℓ 1

2
[5]

in 2 datasets in terms of the mean errors. In terms of the
median errors, GRAfeat performs better on 9 datasets,
MPLS on 2 datasets and GRA1 on 5 datasets. We further
note that the difference in mean and median errors on the
VNC dataset between our method GRAfeat and MPLS is
negligible and can be attributed to the uncertainty of the
average of 50 randomized trials for MPLS. It is only in the
case of the Madrid Metropolis (MDR) dataset that MPLS
truly outperforms either of our GRA variants. It is also
observed that Shonan [7] is outperformed by MPLS and
both our GRA variants. In terms of computational speed,
both variants of our GRA method significantly outperform
all the other methods as shown in Table 3. Specifically
on the large datasets ArtsQuad (ARQ), Trafalgar (TFG),
and Piccadilly Circus (PIC), we observe that our methods
achieve more than one order of magnitude improvement in
speed.

Relative impact of initialization: As a final experiment,
we examine the relative significance of both the loss func-
tions and initialization in determining the quality of rotation
averaging. Specifically, we wish to examine if the improved
performance of our GRA method can be attributed to the
spanning tree initialization using weights based on feature
correspondences or if the Geman-McClure loss function
embedded in GOM framework is significant in achieving
superior performance. In Table 4 we compare the mean and
median errors of our GRA method against the ℓ 1

2
method

of [5] on the large-scale Piccadilly dataset. The perfor-
mance of both methods are compared for an initialization
using a random spanning tree (STrandom) or a maximal



Dataset ē ẽ

Shonan L1RA + ℓ0.5-IRLS MPLS Our Methods Shonan L1RA + ℓ0.5-IRLS MPLS Our Methods
[7] [5] [26] GRA1 GRAfeat [7] [5] [26] GRA1 GRAfeat

ALM 8.55 4.79 4.28 4.27 4.33 4.67 2.14 1.93 1.69 1.90
ARQ NC 4.04 3.18 3.16 2.98 NC 2.54 1.81 1.55 1.52
ELS 6.76 3.39 3.25 4.48 2.30 3.18 1.22 1 1.52 0.81
MDR 12.49 8.13 5.67 8.58 8.91 8.48 3.08 1.82 3.26 3.48
MND 7.33 1.66 1.39 8.17 1.01 3.43 0.71 0.63 3.33 0.45
NYC 8.41 3.13 3.23 3.30 3.35 5.53 1.38 1.36 1.14 1.24
ND1 7.95 3.81 2.93 3.87 3.00 3.93 0.98 0.92 1.01 0.76
PDP 15.14 4.94 4 3.65 3.40 8.75 2.61 1.96 1.74 1.72
PIC NC 6.92 4.69 5.75 4.02 NC 3.13 2.02 1.74 1.67
ROF 13.79 3.19 2.87 2.62 2.33 11.6 1.71 1.45 1.30 1.20
SNF 7.37 3.63 3.96 3.64 4.64 6.36 3.53 3.21 3.08 3.67
TOL 6.93 3.98 3.99 4.21 3.65 3.97 2.45 2.38 2.10 2.11
TFG NC 3.6 4.50 3.21 3.89 NC 2 2.70 1.58 1.64
USQ 14.2 10.13 6.29 8.89 5.96 10.35 4.97 3.43 3.88 3.41
VNC NC 11.15 7.97 11.49 7.99 NC 4.64 3.69 4.44 3.76
YKM 8.17 3.55 3.57 3.66 3.53 5.71 1.62 1.57 1.49 1.48

Table 2: Comparison of mean and median errors (in degrees) for various RA algorithms. Note that the error reported for
MPLS [26] is averaged over 50 trials. ‘NC’ indicates an experiment did not converge.

Dataset Time in seconds
Shonan L1RA +ℓ0.5-

IRLS
MPLS Our Methods

[7] [5] [26] GRA1 GRAfeat

ALM 36.8 13.3 21.4 1.6 1.1
ARQ NC 63.1 86 3.7 3.2
ELS 6 1.6 3.8 0.2 0.3
MDR 7.6 1.8 5.1 0.4 0.4
MND 14.6 3.9 8.4 0.4 0.5
NYC 2.3 1.3 3.8 0.3 0.3
ND1 53.7 12.3 21.3 1.0 1.0
PDP 9.6 1.8 4 0.3 0.2
PIC NC 245.9 218.7 5.6 4.9
ROF 231.2 6.9 12.7 1.1 0.9
SNF 1471.7 54.5 120.9 1.3 1.0
TOL 4 1.2 3.6 0.3 0.3
TFG NC 375.9 789.2 9.8 9.4
USQ 12.1 3.1 5.2 0.5 0.5
VNC NC 14.2 28.3 1.0 0.8
YKM 4.9 1.1 4 0.4 0.4

Table 3: Comparison of time taken for different RA algo-
rithms.

spanning tree based on weights equal to the number of fea-
ture correspondences (STfeat). Since any spannning tree
initialization with ℓ 1

2
loss function has the problem of un-

bounded weights as discussed in Sec. 4, we initialize the
weights in the first IRLS iteration as all 1’s as is imple-
mented by [5] to avoid this problem for the ℓ 1

2
loss function.

As will be observed in a comparative sense from Table 4,
initialization using a feature weighted spanning tree does
improve performance, but the use of Geman-McClure loss
function in a GOM framework has a greater contribution
to improving the quality of the rotation averaging estimates

Initialization ē ẽ

ℓ 1
2

-IRLS GRA ℓ 1
2

-IRLS GRA
STrandom 7.14 5.75 3.04 1.74
STfeat 5.68 4.02 2.87 1.67

Table 4: Mean and median errors on Piccadilly dataset for
ℓ 1

2
-IRLS and GRA with different initializations

and plays a role in improvement independent of the type of
initialization. In summary, the Geman-McClure loss func-
tion embedded in a GOM framework plays a crucial role
in achieving significant improvement which can be further
enhanced by an intelligent choice of initialization.

7. Conclusion
In this paper we have presented an analysis of the proper-

ties and behaviour of the state-of-the-art rotation averaging
method [5] based on IRLS optimization of an ℓ 1

2
loss func-

tion. Further, we have developed a graduated optimization
approach based on Geman-McClure loss function to miti-
gate the drawbacks of the ℓ 1

2
approach. Through extensive

testing on a large number of real-world datasets, we have
demonstrated that our proposed approach significantly out-
performs [5] and other state-of-the-art methods.
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