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Robust Relative Rotation Averaging
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Abstract—This paper addresses the problem of robust and efficient relative rotation averaging in the context of large-scale Structure
from Motion. Relative rotation averaging finds global or absolute rotations for a set of cameras from a set of observed relative rotations
between pairs of cameras. We propose a generalized framework of relative rotation averaging that can use different robust loss
functions and jointly optimizes for all the unknown camera rotations. Our method uses a quasi-Newton optimization which results in an
efficient iteratively reweighted least squares (IRLS) formulation that works in the Lie algebra of the 3D rotation group. We demonstrate
the performance of our approach on a number of large-scale data sets. We show that our method outperforms existing methods in the
literature both in terms of speed and accuracy.

Index Terms—Relative Rotation Averaging, Structure from Motion, 3D Rotation Group, SO(3), Iteratively Reweighted Least Squares,
Quasi-Newton Optimization, Gauss-Newton Optimization.
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1 INTRODUCTION

S Olving the structure-from-motion (henceforth SfM) problem
involves recovering both the 3D structure of points as well as

the camera motions from corresponding or matched points across
multiple images. The most popular approach is a non-linear
optimization method known as bundle-adjustment (henceforth
BA) that fits a generative model for both 3D structure and
cameras to the observed matched image points [1]. BA works
by minimizing reprojection errors on the camera plane and is
statistically optimal. Being a non-linear optimization, BA requires
a good initialization since it is only guaranteed to converge to a
local minimum. This requirement of a good initialization becomes
increasingly stringent with growing problem size. Additionally,
since it involves a highly complex, non-linear optimization over
many unknowns, BA is plagued by the problems of robustness
to outliers and failure to converge owing to the complexity of
the energy landscape. Using efficient optimizers and a variety
of heuristics, modern SfM pipelines [2], [3], [4], [5] are able to
solve the BA problem for a large number of images. To mitigate
the problem of robustness, many approaches incrementally grow
the SfM solution one-camera-at-a-time instead of using a batch
optimization of all cameras at once [2], [4]. This makes the
problem quite slow and BA solutions are not easily scalable to
large-scale problems as they involve a very high computational
cost and expensive hardware.

While BA seeks to simultaneously solve for structure and
motion using many images, it may be observed that methods
based on epipolar geometry can recover camera geometry
independent of the 3D structure which is factored out of the
problem. We can extend this property of structure-independent
geometry estimation to an arbitrary number of cameras using
the approach of motion averaging [6]. Apart from reducing the
number of unknowns involved, by defining a problem purely
in terms of the cameras, motion averaging utilizes the rich
geometric structure of finite-dimensional Lie groups [7]. Using
the two-frame epipolar geometry we can only recover the heading
direction of the second camera with respect to the first and not
the scale of the actual 3D translation between them. However, we
can fully recover the 3D relative rotation between a camera pair
using their epipolar geometry. Consequently, a common approach

has been to first solve the motion averaging problem for 3D
rotations alone and utilize this solution in the estimation of 3D
translation [8], [9]. Once the motions of the cameras are solved,
it is significantly easier to find the positions of the 3D structure
points using multiview triangulation [10] which provides a good
initial guess for BA solutions [9], [11].

In this paper, we address the problem of averaging relative
3D rotations between camera pairs in an SfM context. Apart from
solving large-scale problems, the desiderata for our solution are :
efficiency, accuracy and robustness. Our earlier solution in [12],
achieved these requirements and was derived from the original
approach of [6]. While [6] was non-robust as it used the `2
metric in its computations, [12] achieved robustness and accuracy
by utilizing an `1-based optimization followed by an iteratively
reweighted least-squares (IRLS) refinement in the Lie-algebra of
the group of 3D rotations. In this paper, we generalize and improve
upon the solution in [12] in several significant ways :

1) We show that the relative rotation averaging solutions
in [6], [12] are quasi-Newton optimizations.

2) While in [12], the IRLS step was based on the Geman-
McClure function, in this paper we show how to utilize
and evaluate the performance of different robust loss
functions. We provide a fairly exhaustive evaluation of the
performance of a variety of robust loss functions that are
popular in the statistical literature. Our evaluation leads
to a recommendation of the ` 1

2
loss function that provides

the best empirical performance.
3) We demonstrate the efficacy of our method in terms

of both accuracy and efficiency on a number of large-
scale, real-world datasets and also compare its relative
performance with respect to two other rotation averaging
methods, i.e. DISCO [11] and the Weiszfeld method [13].

In Section 2, we briefly discuss properties of 3D rotations
of relevance to this paper. The problem of relative rotation
averaging is defined in Section 3. Our technique of averaging
relative rotations is introduced next in Section 4. In Section 4
we also present a generalized framework of joint averaging of
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relative rotations under various robust metrics on 3D rotations.
Subsequently, in Section 5 we briefly survey the other existing
methods for relative rotation averaging and also discuss some
scenarios under which the distributed averaging approach of [13]
fails. In Section 6, we demonstrate the accuracy and efficacy of
our method on a number of large-scale real world datasets and we
present some conclusions in Section 7.

2 PROPERTIES OF 3D ROTATIONS

In this section, we briefly recapitulate some of the properties of
3D rotations that play a role in our formulation. Of the many
representations of 3D rotations available in the literature, we
use the 3 × 3 orthonormal matrix R, i.e. RTR = RRT = I3

where I3 is the 3 × 3 identity matrix. Moreover, it is required
that det(R) = +1. The set of all such 3 × 3 orthonormal
matrices with determinant equal to +1 forms a closed group,
i.e. the Special Orthogonal group of dimension 3 or SO(3). The
reader may refer to [14] for details. In addition to being a group,
SO(3) is equipped with the smooth differentiable structure of
a Riemannian manifold, i.e. SO(3) is a finite-dimensional Lie
group. Both the group operations of product and inverse are
smooth differentiable mappings for such Lie groups [6]. For our
purposes, we recognise that the local neighborhood of a point on
the group is adequately described by its tangent space known as
the Lie algebra. Additionally, there exist direct mappings between
this Lie algebra and the corresponding Lie group and vice-versa,
which are specified by the exponential and logarithm functions.
For SO(3), the corresponding Lie algebra is denoted as so(3).

Choosing the canonical or Euclidean metric in the Lie algebra
representation leads to an intuitive definition of the geodesic
distance on the rotation group SO(3). This distance is easily spec-
ified by the familiar axis-angle parametrization of 3D rotations. In
the axis-angle form, the 3 × 1 vector ω represents a rotation of
angle ‖ω‖ about the axis ω/‖ω‖. The relation between the matrix
representation of rotation R and its axis-angle representation ω is
given by

R = exp([ω]×) (1)

[ω]× = log(R) (2)

where [ω]× is the skew-symmetric form of ω, i.e.

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

It will be immediately noted that the skew-symmetric form
[ω]× defines the Lie algebra for the rotation group SO(3). For
notational simplicity, throughout this paper we use R(ω) to
denote the 3D rotation obtained by the exponential mapping
applied to [ω]× ∈ so(3) and ω(R) to denote the 3 × 1 vector
representation of ω extracted from the logarithm applied to
R ∈ SO(3). We also note that for the rotation group SO(3), the
exponential and logarithm functions have closed forms known as
the Rodrigues formula [14].

Another property of relevance to us arises out of the non-
commutative nature of the SO(3) group. Specifically, for two 3D
rotations about different axes, R(ω1)R(ω2) 6= R(ω1 + ω2).
Instead, R(ω1)R(ω2) = R(BCH(ω1,ω2)) where BCH(., .)
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Fig. 1. A view-graph representation of the available relative rotations.
The averaging problem considered in this paper is one of recovering
the rotations at the vertices (cameras) given the relative rotations on the
edges.

is the Baker-Campbell-Hausdorff form expressed as a series on
the two Lie algebra terms ω1 and ω2 [6], [15]. For the rotation
group SO(3), the BCH series has a closed form expression
BCH(ω1,ω2) = αω1 + βω2 + γ ω1 × ω2, where the scalars
α, β and γ are functions of ω1 and ω2 [16], [17].

Given the Lie group structure of SO(3), the intrinsic or
Riemannian distance between two rotations R1 and R2 can be
easily specified. In terms of the axis-angle parametrization, this
distance is the magnitude of the angle that takes us from R1 to
R2. Noting that the distance metric on SO(3) is bi-invariant in
nature [14], we have

d(R1,R2) = d(R2,R1) = d(I,R2R
−1
1 )

=
1√
2
‖ log(R2R

−1
1 )‖F = ‖ω(R2R

−1
1 )‖

= ‖BCH(ω2,−ω1)‖ (4)

where d(·, ·) is the Riemannian distance on SO(3) and ‖ · ‖F
denotes the Frobenius norm.

3 RELATIVE ROTATION AVERAGING

With these preliminaries, we can now define the problem of
robust relative rotation averaging on the SO(3) group. Consider
Figure 1 which depicts a graph (known as the view-graph)
G = {V, E} representing the geometric relationships between
cameras viewing a scene. Each vertex in V represents a camera
with an unknown absolute rotation. We denote the number of
vertices or cameras i.e. |V| as N and the number of edges i.e. |E|
as M . The presence of an edge (i, j) ∈ E implies that the relative
rotation between cameras i and j is available. The set of all 3D
rotations RV = {R1,R2, · · · ,RN} completely specifies the
global rotations of all the cameras with respect to a given frame
of reference. Additionally, we may denote the relative rotation
between two cameras i and j as Rij and denote the collection
of all relative rotations, one for each edge, as RE . If the set of
edges E span the entire view-graph, then we can solve for the
unknown absolute rotations of all the cameras from the pairwise
relative rotations. In other words, while in principle M can be as
large as NC2 = N(N−1)

2 , we only need M = (N − 1) suitable
edges to solve for RV . We note that if images i and j share
a sufficient number of common feature points, then using the
epipolar geometry [18], [19], [20] we can obtain an estimate of
Rij .
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Since the cameras i and j have absolute rotations of Ri and
Rj respectively in a given frame of reference, it is obvious that
the relative rotation between them should obey the relationship

Rij = RjR
−1
i , ∀{i, j} ∈ E (5)

The problem of relative rotation averaging can be stated as
follows: Given a sufficient number of relative rotations Rij ∈ RE
(lhs of Equation 5) we seek an estimate of the global camera
rotations, i.e. RV . In practice, we always have a larger number of
edges than is required to span the view-graph, i.e. |E| > N − 1,
implying that we have a redundant set of observations. We also
note that due to the presence of noise or outliers the set of
relative rotations are inconsistent, i.e. we cannot find a solution
RV = {R1,R2, · · · ,RN} that exactly satisfies all the con-
straints {Rij = RjR

−1
i |∀(i, j) ∈ E}. Therefore, we seek to

find an estimate RV that is most consistent with the observed
relative rotations. This solution is obtained by minimizing a cost
function that penalizes the discrepancy between the observed
relative rotations Rij and that suggested by the estimate RjR

−1
i ,

i.e.

RV = argmin
{R1,R2,··· ,RN}

∑
(i,j)∈E

ρ(d(Rij ,RjR
−1
i )) (6)

where d(·) is a distance measure between two rotations in SO(3)
and ρ(·) is a loss function defined over this distance measure.

3.1 Choice of Loss Function ρ(.)

The distance metric d(·, ·) described above in Section 2 can be
used to measure the residual fitting error for a relative rotation
observation on a single edge in E . However, to define the objective
function to be minimized in Equation 6, we also need to define
a loss function ρ(·) that determines the relative contributions
of individual errors. The original approach of [6] uses a loss
function of ρ(x) = x2 in Equation 6 resulting in a non-robust
method as it is well-known that the quadratic loss function is
highly susceptible to outliers. Contemporary SfM pipelines are
designed to solve large-scale problems using many real-world
images. It is often the case that the existence of repeated elements
in many man-made structures such as building facades, variation
in illumination etc., all result in false feature point matches across
image pairs. As a result, even when one uses robust techniques
for epipolar geometry estimation, one does end up with corrupted
relative rotation estimates Rij for some of the edges in the
viewgraph.

In statistical terms, the quadratic loss function ρ(x) = x2 has
an unbounded influence function [21], as a result any observation
that is far from the estimate will result in a very high penalty.
Although, unlike Euclidean space, the distance on the manifold
of SO(3) is bounded by π radians, this bound is always very
large compared to the noise level in estimated relative rotations.
Consequently, the optimization will significantly move the
estimate away from the true solution, i.e. the resulting estimate
will be severely corrupted by any outliers. To some extent this
problem is mitigated by using an `1 loss function, i.e. ρ(x) = |x|.
This is the approach taken by the Weiszfeld method of [13].
However, while the `1 penalty makes it robust, the distributed
averaging approach of [13] suffers from the problem of slow

convergence for large-scale datasets.

The `1 function has an influence function of constant
magnitude, hence it is more robust than the `2 loss function.
However, in an ideal scenario, we would like to allow no
influence for the measurements which are outliers. While this is
impossible to achieve without classifying observations as outliers,
we have recourse to loss functions ρ(x) other than `1 that have
diminishing influence as |x| increases. In Table 1, we provide
a fairly exhaustive list of loss functions that are common in
the robust statistics literature [21]. While loss functions such
as Geman-McClure have a diminishing influence that provides
robustness, such methods are more susceptible to converge to an
improper local minima. As a result, the optimization procedure
needs to be initialized with a good initial guess. Often in the
literature of robust statistics [22], such initializations are obtained
using the solution of another loss function e.g. the `1 loss function.

Before we move on to describing our approach for robust
averaging of relative rotations, we wish to remark on the choice
of distance functions on the space of 3D rotations. While we
have used the geodesic distance on SO(3) as the distance
metric in this paper, there are a few other distances used in
the literature. Some approaches ignore the intrinsic constraints
that define a rotation as an element of the SO(3) group and
compute the extrinsic distance instead. In other words, these
methods use the distance dchordal(R1,R2) = ‖R1 − R2‖F
which is also known as the chordal distance. Rotations can also
be represented as unit quaternions [14]. If the rotations R1

and R2 are equivalently represented by the unit quaternions q1

and q2, then the quaternion distance between them is defined
as dquaternion(R1,R2) = min (||q1 + q2||), (||q1 − q2||).
If we denote the geodesic distance between two rotations
R1 and R2 as θ, then the chordal distance between them
dchordal(R1,R2) = ||R1 −R2||F is related to the geodesic
distance as dchordal(R1,R2) = 2

√
2 sin(θ/2). Equivalently,

the quaternion distance is related to the geodesic distance as
dquaternion(R1,R2) = 2 sin(θ/4). All of these distances can
also be subsumed under our approach.

4 OUR APPROACH

In this section, we describe our approach to solving the
optimization problem in Equation 6. In brief, we reduce the
problem in Equation 6 into an iterative optimization problem.
In each iteration, this optimization problem is solved using a
quasi-Newton method that leads to an overall averaging method
that is both efficient and robust to outliers.

4.1 Reduction to Iteratively Reweighted Least Squares
The optimization problem in Equation 6 can be rewritten as

RV = argmin
{R1,R2,··· ,RN}

∑
(i,j)∈E

ρ(d(Rij ,RjR
−1
i ))

= argmin
{R1,R2,··· ,RN}

∑
(i,j)∈E

ρ(‖ω(R−1
j RijRi)‖)

= argmin
{R1,R2,··· ,RN}

∑
(i,j)∈E

ρ(‖ω(∆Rij)‖) (7)
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Name Loss function (ρ(x)) Influence function (ψ(x)) Weight function (φ(x))
`2 x2/2 x 1
`1 |x| sign(x) 1/|x|
`α |x|α/α sign(x)|x|α−1 |x|α−2

Geman-McClure x2/2

α2+x2
α2x

(α2+x2)2
α2

(α2+x2)2

Huber
{

x2/2 if |x| ≤ α
α(|x| − α/2) if |x| ≥ α

{
x if |x| ≤ α

αsign(x) if |x| ≥ α

{
1 if |x| ≤ α

α/|x| if |x| ≥ α
Pseudo-Huber

or `1 − `2 α2
(√

1 + x2/α2 − 1
)

x√
1+x2/α2

1√
1+x2/α2

Andrews
{
−α2 − α2 cos (x/α) if |x| ≤ απ

0 if |x| ≥ απ

{
α sin (x/α) if |x| ≤ απ

0 if |x| ≥ απ

{
sin(x/α)
x/α

if |x| ≤ απ
0 if |x| ≥ απ

Tukey’s Biweight
or Bisquare

 α2

6

(
1−

(
1− (x/α)2

)3)
if |x| ≤ α

0 if |x| ≥ α

{
x
(
1− (x/α)2

)2
if |x| ≤ α

0 if |x| ≥ α

{ (
1− (x/α)2

)2
if |x| ≤ α

0 if |x| ≥ α

Cauchy α2

2
log
(
1 + (x/α)2

)
x

1+(x/α)2
1

1+(x/α)2

Fair α2 (|x|/α− log (1 + |x|/α)) x
1+|x|/α

1
1+|x|/α

Logistic α2 log (cosh (x/α)) α tanh (x/α)
tanh(x/α)

x/α

Talwar
{

x2 if |x| ≤ α
α2 if |x| ≥ α

{
x if |x| ≤ α
0 if |x| ≥ α

{
1 if |x| ≤ α
0 if |x| ≥ α

Welsch α2

2

(
1− exp

(
− (x/α)2

))
x exp

(
− (x/α)2

)
exp

(
− (x/α)2

)
TABLE 1

Different robust loss functions.

where ∆Rij = R−1
j RijRi. It will be noted that given a

current estimate of the rotations RV , for the cameras (vertices in
V), ||∆Rij || denotes the discrepancy or difference between the
observed relative rotation between cameras i and j of Rij and
that implied by the current estimate RjR

−1
i . In other words,

Equation 7 implies that our goal is to find the camera rotations
that best explain the observed relative rotations, i.e. are most
consistent with the observed data according to the chosen distance
and loss functions d(·, ·) and ρ(·) respectively.

In the following we will consider an iterative approach to
minimizing our objective function. To keep the notation sim-
ple, we drop the iteration index in our representation. Let
the current estimate of RV be {R1, · · · ,RN}. In the cur-
rent iteration, we seek to apply an update to RV that will
decrease the cost function of Equation 7. Let this update be
{∆R1, · · · ,∆RN}, i.e. after the update the new estimate of
RV will be {R1∆R1, · · · ,RN∆RN}. Therefore, in a given
iteration, our objective is to minimize∑

(i,j)∈E

ρ
(∣∣∣∣∣∣ω (∆R−1

j ∆Rij∆Ri

)∣∣∣∣∣∣) (8)

For each individual rotation update ∆Ri, let the equiva-
lent axis-angle representation be denoted as ∆ωi for all i ∈
{1, · · · , N}. We collect all of these vectors into a single 3N × 1

vector ∆ΩV =
[
∆ωT1 , · · · ,∆ωTN

]T
. Further, for each of the

residual rotation terms ∆Rij , the equivalent axis-angle represen-
tation is denoted as ∆ωij for all (i, j) ∈ E . The concatenation
of all these vectors into a 3M × 1 vector is denoted as ∆ΩE .
Recalling that an orthonormal rotation matrix R is equal to the
matrix exponentiation on the axis-angle form (i.e. Lie algebraic
representation), Equation 8 boils down to finding ∆ΩV that
minimizes the cost function F (∆ΩV) given by

F (∆ΩV) =
∑

(i,j)∈E

ρ (||ω (R (−∆ωj) R (∆ωij) R (∆ωi))||)

=
∑

(i,j)∈E

ρ (||rij (∆ΩV)||) (9)

where,

rij (∆ΩV) = ω (R (−∆ωj) R (∆ωij) R (∆ωi)) (10)

The gradient of F (∆ΩV) is given by

∇F (∆ΩV) =
∑

(i,j)∈E

∇ρ (||rij (∆ΩV)||)

=
∑

(i,j)∈E

ψ (||rij (∆ΩV)||)∇ (||rij (∆ΩV)||)

(11)

where ψ (r) = ∂ρ(r)
∂r is the influence function. Let us define

φ (||rij (∆ΩV)||) =
ψ(||rij(∆ΩV)||)
||rij(∆ΩV)|| . Therefore

∇F (∆ΩV)

=
1

2

∑
(i,j)∈E

φ (||rij (∆ΩV)||) 2 ||rij (∆ΩV)||∇ (||rij (∆ΩV)||)

=
1

2

∑
(i,j)∈E

φ (||rij (∆ΩV)||)∇
(
||rij (∆ΩV)||2

)
(12)

We can find the optimal ∆ΩV by equating ∇F (∆ΩV) to
zero. Here we use the IRLS [23] optimization and therefore,
during each iteration, we treat φ (||rij (∆ΩV)||) as a constant
given by φ (||rij (0)||). For simplicity of notation, let us denote
φ (||rij (0)||) as φij . Therefore, our problem is to solve∑

(i,j)∈E

φij .∇
(
||rij (∆ΩV)||2

)
= 0 (13)

which is equivalent to the following minimization problem

minimize
∆ΩV

∑
(i,j)∈E

φij ||rij (∆ΩV)||2 (14)

We reiterate that the weights φij = φ (||rij (0)||) are
computed for each edge (i, j) ∈ E at every iteration. Thus, we
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have reduced our problem of relative rotation averaging into
an iteratively reweighted nonlinear least squares problem. We
shall now see how in each iteration, we can solve the weighted
nonlinear least squares problem using a quasi-Newton method.

4.2 Optimization using Quasi-Newton Method
In the quasi-Newton method of optimization, the Hessian of the
cost function is approximated by a positive semi-definite matrix.
While positive semi-definiteness of the Hessian ensures that the
updates are always in a descent direction, there are many possible
choices of the Hessian. Note that the Gauss-Newton algorithm is a
specific case of the quasi-Newton method for solving the nonlinear
least squares problem where the cost function can be represented
as a sum of squared nonlinear functions. In the Gauss-Newton
method the proxy for the Hessian is derived from the Jacobian of
the cost function. In each iteration of the Gauss-Newton algorithm,
functions are locally approximated in a first-order sense and thus
the optimization problem boils down to a linear least squares
problem. A similar first-order approximation of the squared term
in the rhs of Equation 13 leads to

minimize
∆ΩV

∑
(i,j)∈E

φij .
∣∣∣∣∣∣rij (0) + Jrij (0)

T
∆ΩV

∣∣∣∣∣∣2 (15)

where Jrij (0) is the Jacobian (with respect to the unknown to be
estimated, ∆ΩV ) of rij (∆ΩV) at the current point ∆ΩV = 0.
Minimizing the cost in Equation 15 is equivalent to solving the
following linear system of equations in a least squares sense√

φijJrij (0)
T

∆ΩV = −
√
φijrij (0) ∀(i, j) ∈ E (16)

From Equation 10, clearly, rij (0) = ∆ωij . We have derived
the form for Jrij (0) by differentiating the cost function in the
Appendix. Consequently, we have

Jrij (0) = αij
[
· · ·+ I · · · − I · · ·

]︸ ︷︷ ︸
Aij

+(1− αij)
[
· · ·+ ∆ωij∆ωTij

θ2ij
· · · − ∆ωij∆ωTij

θ2ij
· · ·

]
︸ ︷︷ ︸

Bij

+
1

2

[
· · ·+ [∆ωij ]× · · ·+ [∆ωij ]× · · ·

]︸ ︷︷ ︸
Cij

(17)

where θij = ||∆ωij || and αij =
θij
2 cot

(
θij
2

)
. Aij , Bij and

Cij are constructed by placing the respective terms as 3 × 3
blocks in the appropriate locations of i and j respectively.

Thus, the Gauss-Newton problem in Equation 16 becomes√
φij

(
αijAij + (1− αij)Bij +

1

2
Cij

)
∆ΩV

= −
√
φij∆ωij ∀(i, j) ∈ E (18)

which we approximate (as a quasi-Newton form) as√
φijAij∆ΩV = −

√
φij∆ωij ∀(i, j) ∈ E (19)

Now collecting all the equations for individual edges (i.e.
∀(i, j) ∈ E) into a single system of equation we get,

√
ΦA∆ΩV = −

√
Φ∆ΩE (20)

where A is the matrix obtained by stacking Aij as row matrices.
Φ is a diagonal matrix with its diagonal elements populated by
φij .

Here, we make a few observations regarding our
approximation in Equation 19. Firstly, this approximation
provides us some advantages. We note that αij , θij , Bij and Cij

depend on the current residuals (∆ΩE ) that change with each
iteration. Therefore, by eliminating these terms, we eliminate
extra computational expenses in each iteration. Further, this
approximation leads to a 3M × 3N A matrix which is the
Kronecker product between the identity matrix and the edge
incidence matrix of the view-graph G. The system of 3M
equations involving 3N unknowns in Equation 20 can be
decoupled into 3 systems of equations each having M equations
of N unknowns. Each row of A corresponds to an edge in the
view-graph and contains only two non-zero entries one of which
is +1 and the other is −1. Consequently, A depends solely on the
topology of the view-graph G and since it does not change with
the iterations, it needs to be computed only once. These factors
result in a further speedup.

Secondly, we note that the approximation made in Equation 19
is a small angle approximation for θij . However, even when θij
are not small (for example, when we are far from the optimal
value or when the measurement noise is high) this is still a valid
quasi-Newton optimization which guarantees that the updates are
in descent direction. As we shall see in the following sections,
this ensures that our method terminates to a stationary point of the
underlying cost function where the gradient is zero. We remark
here in passing that the joint averaging approach of [6], which is
also used in this paper, has been misinterpreted as a first-order
approximation of the underlying problem in [24]. The use of an
approximation of an intermediate iteration step does not imply that
the overall cost function is approximated.

Now solving Equation 20 in a least squares sense is equiv-

alent to minimizing
(√

ΦA∆ΩV +
√

Φ∆ΩE
)2

. Therefore, our
update step can be written as

∆ΩV = −
(
ATΦA

)−1
ATΦ∆ΩE (21)

Note that
(
ATΦA

)
is the weighted Laplacian matrix of the

view-graph G and is often very sparse in practice since only a
small fraction of all the possible camera pairs have matching
relationships, i.e. the number of edges |E| = M is much smaller
than the maximum possible NC2 = N(N−1)

2 edges. This sparsity
further helps us in solving Equation 21 efficiently.

To summarize our approach thus far, we start with a non-linear
cost function (Equation 6) that we solve iteratively. We consider
the form of an update step in a given iteration that leads to the
minimization problem in Equation 9. Setting the gradient of the
corresponding cost function to zero leads to Equation 14, which
is an IRLS minimization problem, albeit non-linear. Further, this
non-linear problem is solved by using the quasi-Newton step of
Equation 21 which is of the IRLS form for linear least-squares.
We can now summarize our algorithm for robust averaging of
relative rotations as given in Algorithm 1.
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Algorithm 1 Relative Rotation Averaging with iteratively
reweighted least squares
Input: Set of relative rotation measurements {Rij} for ij ∈ E ,
tolerance ε, maximum iterations Nmax
Output: Set of absolute rotations RV = {R1, · · · ,RN}
Initialisation: Set RV = {R1, · · · ,RN} to an initial guess. Set
iteration number k = 1

while ∆ΩV > ε AND k < Nmax do
1. ∆ωij ← ω(R−1

j RijRi)
2. Collect ∆ωij ∀ij ∈ E into ∆ΩE
3. φij ← φ (rij (0)) where rij is defined in Equation 10
4. Collect φij ∀ij ∈ E into a diagonal matrix Φ

5. ∆ΩV ← −
(
ATΦA

)−1
ATΦ∆ΩE

6. ∀i ∈ {1, N},Ri ← RR(∆ωi)
7. k ← k + 1

end while

4.3 Characterizing the Properties of Our Method

In this subsection, we show that the gradient of our cost function
(Equation 9) is zero at the point of convergence of Algorithm 1.
This proves that our algorithm reaches a stationary point of
the underlying cost function. Such a point could be a local
minimum or a saddle point of the cost function. [25] discusses the
theoretical existence of saddle points for the problem of relative
rotation averaging. However, in our extensive real and synthetic
experiments, we always found our method to converge very close
to the ground truth.

Using Equation 12, we rewrite the gradient of the cost function
as

∇F (∆ΩV)

=
1

2

∑
(i,j)∈E

φ (||rij (∆ΩV)||)∇
(
||rij (∆ΩV)||2

)
=

∑
(i,j)∈E

φ (||rij (∆ΩV)||) rij (∆ΩV)
T J (rij (∆ΩV))

(22)

Therefore at a given iteration of the optimization, the gradient
is given by

∇F (0)

=
∑

(i,j)∈E

φ (||rij (0)||) rij (0)
T J (rij (0))

=
∑

(i,j)∈E

φij∆ωTij

(
αijAij + (1− αij)Bij +

1

2
Cij

)
=

∑
(i,j)∈E

φij
(
αij∆ωTijAij + (1− αij)∆ωTijBij + 0

)
=

∑
(i,j)∈E

φij
(
αij∆ωTijAij + (1− αij)∆ωTijAij + 0

)
= ∆ΩE

TΦA (23)

In Equation 23, from the form of Cij in Equation 17,
we have ∆ωTijCij = 0. Moreover ∆ωTijBij can be seen
to reduce to the form of ∆ωTijAij . In our algorithm, we
stop only when the solution to Equation 20 is ∆Ωk

V = 0,

i.e. when the right hand side (−
√

Φ∆ΩE ) lies outside the
column space of

√
ΦA. This is equivalent to the criteria(√

ΦA
)T (
−
√

Φ∆ΩE
)

= 0. Therefore, on termination of

our algorithm,
(√

ΦA
)T (
−
√

Φ∆ΩE
)

= ATΦ∆ΩE =

∇F (0)
T

= 0. Therefore, our algorithm terminates to a
stationary point of the underlying cost function. We may now
investigate this property of our method by considering two special
cases.

Case 1: Assume that we are using a least squares or quadratic
loss function i.e. ρ(x) = x2. Therefore, Φ is an identity matrix.
On termination of our algorithm, AT (∆ΩE) = 0. Recall
that, A is the edge incidence matrix of the view-graph, where
columns correspond to the vertices and rows correspond to edges.
Consider, the j-th N × 3 block of A. This block signifies the
edges that are connected to the j-th camera. Therefore, the fact
that AT (∆ΩE) = 0 implies

∑
i∈N (j)

ω(R−1
j RijRi) = 0, where

N (j) is the set of vertices connected to i. Now, RijRi is the
position of j-th camera estimated from the connecting edge from
camera i. Therefore, this shows that vertex j is at the geodesic
mean of all the estimates suggested by its neighbors. This proves
that on termination of our method, each and every camera i ∈ V
is oriented along the geodesic or intrinsic mean of the rotations
suggested by the edges incident on camera i. In fact this is
the principle also used for the distributed least squares rotation
averaging in [25].

Case 2: Assume that we are using an `1 loss function i.e.
ρ(x) = |x|. A similar argument as in case 1 proves that on
termination of our method, each and every camera i ∈ V is
oriented along the geodesic or intrinsic median of the rotations
suggested by the edges incident on camera i. Once again, this is
the principle used for the distributed `1 rotation averaging in [13].
However, the difference of these approaches compared to ours
lies in the method used for optimization.

4.4 About the Nature and Convergence of Our Method

In the previous subsection, we have shown that our method
terminates to a stationary point of the underlying cost function.
In this subsection, we show that in each iteration of Algorithm 1
we choose a descent direction to update our estimate. Referring to
Equation 21 and 23, our update steps can be written as

∆ΩV = −
(
ATΦA

)−1
∇F (0)

T (24)

Since
(
ATΦA

)
is a positive semi-definite matrix our update

steps are always along a descent direction. Note that, this
property by itself does not guarantee that the cost is minimized
at every iteration as the size of the update step may be larger
than what is required to reach the directional minimum.
This can be remedied by performing a line search along the
update direction. However, in our extensive experiments, we
have never needed such a computationally expensive line search,
and our approach always converged very close to the ground truth.
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4.5 Initialization and Further Speed Improvements
As discussed earlier, while loss functions like Geman-McClure or
` 1

2
are robust to outliers, they are also prone to converge to local

minima. Therefore, we initialize our method by first optimizing
an `1 loss function for a few iterations (5 in our experiments) and
then we minimize a more robust loss function. We parenthetically
note here that in our implementation, the `1 minimization is
initialized using the solution obtained using a random spanning
tree of the view-graph.

However, carrying out `1 minimization using the IRLS method
is time consuming since we need to compute weights in each
iteration of Algorithm 1 to minimize ||Φ(A∆ΩV + ∆ΩE)||2.
In any event, for us this `1 minimization is only a way to
obtain a reasonable initial estimate. Therefore, to reduce the
computation cost, we choose to minimize ||(A∆ΩV + ∆ΩE)||
instead of ||Φ(A∆ΩV + ∆ΩE)||2. We can efficiently minimize
||(A∆ΩV + ∆ΩE)|| using a convex programming approach [12],
[26]. This approach is faster than computing weights in every
iteration and is also robust to outliers. Therefore, we choose to
minimize ||(A∆ΩV + ∆ΩE)|| which we shall refer to as the
‘initial `1’ cost for the first few iterations. Thereafter, we start
the optimization of the desired cost function considering the
appropriate weight matrix. Our initial `1 optimization is described
in Algorithm 2 and our overall algorithm is summarized in
Algorithm 3.

Algorithm 2 Initial `1 Relative Rotation Averaging
Input: Set of relative rotation measurements {Rij} for ij ∈ E
Output: Set of absolute rotations RV = {R1, · · · ,RN}
Initialisation: Set iteration k = 1 and RV to any initial value

while ∆ΩV > ε AND k < Nmax do
1. ∆ωij = ω(R−1

j RijRi)
2. Collect ∆ωij∀(i, j) ∈ E into ∆ΩE
3. ∆ΩV = argmin

∆ΩV

||A∆ΩV + ∆ΩE ||

4. ∀i ∈ {1, N},Ri ← RiR(∆ωi)
5. k ← k + 1

end while

Algorithm 3 Complete Relative Rotation Averaging Algorithm
Initial `1 step:

• Initialise RV to initial guess
• Run 5 iterations of Algorithm 2

Iteratively Reweighted Least Squares step:

• Set RV to output of Initial `1 step
• Run Algorithm 2 until convergence

5 EXISTING METHODS

In this section, we briefly discuss the other existing methods for
relative rotation averaging with a focus on two state-of-the art
approaches that we compare our method with, i.e. the Weiszfeld
approach of [13] and the discrete-continuous optimization
(DISCO) approach of [11]. The problem of relative rotation
averaging was first introduced in [8] where a linear solution is
obtained using a quaternion representation for rotations under

Fig. 2. Log-log plot of distribution of errors in relative rotations for various
large-scale datasets. The almost linear behaviour of all datasets implies
that it is not possible to choose a threshold for removing outliers. See
text for details.

a small noise assumption. Since quaternions q and −q both
represent the same rotation, this approach needs to fix this
sign ambiquity which makes the problem more complicated.
In [6], the problem of motion averaging is solved using a Lie
group representation. Both of these methods do not incorporate
robustness to outliers in the observations. Subsequent robust
approaches can be classified according to the manner in which
they handle outliers. The first set of approaches [11], [27], [28]
identify outliers and remove them before proceeding with the
averaging step. The second set of methods that include [12], [13]
solve the problem by considering all observations and suppressing
the influence of outliers.

Methods that remove outliers : The non-robustness of [6]
was addressed in [27] which used a RANSAC approach to detect
and remove outlier edges from the viewgraph. Once outliers
are removed, the `2-based averaging approach of [6] is applied.
The outlier removal technique of [28] relies on the fact that
composition of transformations in a loop should result in an
identity transformation. In [28] statistics are collected on many
loops of the viewgraph. This information is fed into a belief
propagation formulation to identify outliers. Both [27], [28]
are extremely computationally costly for large-scale problems.
Recently, [11] proposed the DISCO algorithm which also uses
a belief propagation method for outlier detection. In [11] the
problem of relative rotation averaging is solved in two steps. In
the first step, by ignoring the twist component of camera rotations,
the parameter space of 3D rotations is coarsely discretized into a
small set of discrete rotations. The problem of robust averaging
is then performed using loopy belief propagation on a label
set corresponding to the discrete rotations. The approximate
solution of this step is used to detect and remove outliers.
Subsequently, DISCO refines this discrete solution using a
non-linear optimization based on the Rodrigues parameters of
rotations. While we will characterize the performance of DISCO
in Section 6, we remark here that DISCO converts the problem
of robust geometric estimation into one of discrete optimization
using belief propagation. Thus, while DISCO can handle large-
scale problems, it does so at a very high computational cost and
requires expensive hardware in the form of a cluster. Additionally,
DISCO fails to exploit the geometric structure of SO(3).

Apart from their high computational cost, the above methods
that identify outliers are unsatisfactory for another reason.
Any approach that identifies and removes outliers requires the
specification of a threshold that is used for classification. While
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even under favorable circumstances specifying such a threshold
is a bit of a black art, in our context of rotation averaging for
SfM problems it is often infeasible to define this threshold in a
principled fashion. Consider Figure 2 which shows the distribution
of errors in the set of relative rotations RE , i.e. the distribution
of {d(Rij ,R

G
j (RG

i )−1)|∀(i, j) ∈ E} where RG
k is the ground

truth for the k-th camera. This distribution of errors is shown for
some large-scale datasets as well as for all datasets considered
together (marked ‘All’). From the linear nature of the plot on a
log-log scale, we can easily infer that it is not possible to specify
an obvious outlier threshold. In other words, for real-world data
it is not possible to clearly classify relative rotations as inliers or
outliers, hence the need to incorporate robustness in the averaging
step without removing outliers.1

Methods that estimate in the presence of outliers : The
Weiszfeld method of [13] addresses the problem of robust
estimation in the presence of outlier observations. Working with
the Lie group structure of SO(3), this approach incorporates
robustness by replacing the `2 distance with the robust `1
distance in the computations in the Lie algebra. While this
allows for robustness, the estimate of [13] is a distributed
averaging approach [29], [30] where each individual vertex
(camera) in the viewgraph G is updated in turn, while holding the
rotation estimates of the rest of the cameras fixed. An equivalent
distributed approach of rotation averaging for outlier free cases
can be found in [25]. The rate of convergence of [13] is extremely
slow as the vertices are updated one at a time. In addition, we
show example scenarios where the Weiszfeld update of [13] fails
resulting in a completely wrong solution. In [31], a distributed
averaging technique is further utilized for a general `q norm
optimization. Like the Weiszfeld method, the approach in [32]
is also a distributed approach to relative rotation averaging. [32]
provides a guarantee of global convergence with a specific choice
of loss function under perfect noise-free measurements and
the experiments are for small datasets comprising at most 124
cameras. However, under noise-free measurements, since we
are not restricted to distributed estimation, we can simply use
a spanning tree of the view-graph to estimate all the unknown
rotations perfectly. In other words, solving the noise-free problem
is trivial for us. In [33], a quaternion representation of rotation
is used to solve the problem of relative rotation averaging. The
RANSAC approach of [27] is used to fix the sign ambiguity of
quaternions. Subsequently, using a quaternion representation, [33]
refines its solution using an IRLS approach and provides for
a test for global minima using Lagrangian duality. In [34], the
theory of sparse matrix recovery and completion is applied
using an orthonormal matrix representation of 3D rotations.
Apart from having to relax the orthonormality constraints of
rotation matrices, their approach uses a huge matrix to represent
the rotations between all pairs of cameras, which makes their
approach infeasible for large-scale problems.

The approach of this paper belongs to the later category of
methods that work in the presence of outliers. Like [6], [12], it
utilizes the Lie group structure of SO(3) but also incorporates
robustness without sacrificing either speed or accuracy. In contrast

1. For the plots in Figure 2 since we do not have a true ground truth RjR
−1
i ,

we have used an incremental BA solution as our ‘ground truth’. However this
does not change our basic inference that no clear outlier threshold exists for
real data.
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(b) Spanning Tree (failure case)

Fig. 3. Synthetic graphs to demonstrate problems of slow convergence
and failure of the Weiszfeld method of [13]. Please see text for details.

to the distributed approach of [13], our method jointly solves for
all unknown 3D rotations.

Comparison with the Weiszfeld method [13]: While the
Weiszfeld method of [13] also solves the problem on the SO(3)
group, it suffers from the twin problems of slow convergence
and failure cases. We illustrate both these outcomes using the
following two synthetic experiments.

Slow Convergence : Consider the view graph in Figure 3(a)
consisting of 5 vertices that form a full graph of all possible edges.
Suppose that the vertices represent rotations in the XY plane, i.e.
the rotations have only one degree of freedom making this a one-
dimensional problem. Let all vertices be assigned to the ground
truth values except for vertex 1 which is set to a wrong value.
Therefore, if we update only vertex 1 we can reach the optimal,
ground truth configuration. At this point the gradient of the cost
function ∇F is proportional to [ 4 −1 −1 −1 −1 ]T

and following a distributed averaging method starting with vertex
1, we can immediately reach the correct optima. However, if
we start our updates at any other vertex, then these vertices
will also be moved from their correct position which in turn
will take many iterations to converge to the optima. In contrast,
in our joint averaging scheme, the update step is computed
as (ATA)−1∇F = [ 1 0 0 0 0 ]T which results in
only one vertex being moved, resulting in faster and quicker
convergence. This observation can be generalized to larger graphs
with chunks of correct estimates, where the distributed averaging
approach of [13] will take a long time to converge.

Failure Case : We illustrate the possibility of the failure of the
Weiszfeld method of [13] using a scenario as follows. Consider
the situation depicted in Figure 3(b) where we have a graph of 10
vertices. We assume that we have a full graph here of 45 relative
rotation estimates. For ease of visualization, we only depict only
a specific spanning tree of interest here. We note that the method
of [13] uses the rotations estimated using a spanning tree as the
intial guess for its distributed averaging iteration. Let us assume
that the relative rotation estimates for the three thick red edges
are outliers whereas all other edges have perfect measurements.
Under this scenario, as is done in [13], let us generate an initial
guess for the rotation estimates using this spanning tree. Note that
this spanning tree contains 3 outliers which divides the graph into
3 chunks such that the initial rotation estimates are grossly wrong
(although each individual chunk is correct). Now each node has
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9 neighbors (since we have a full graph) such that the estimated
rotations from the neighbors will have 3 different values. We
synthesized such situations with the ground truth rotations for the
10 vertices generated randomly. For more than 70% of the time,
the distributed rotation averaging approach of [13] converged to a
grossly wrong minima, whereas our joint optimization technique
always converged to the correct estimate.

6 RESULTS

In this section, we demonstrate the efficiency and accuracy of
our relative rotation averaging approach on some large-scale real-
world data sets. We begin with a description of the data sets used.

Data set characteristics: In Table 2, we summarize the
characteristics of the real world data sets we have used in our
experiments. For dataset ‘Notre Dame 715’ (ND2) we used the
raw images available online2 to compute the pairwise relative
rotations from the two-image BA solution obtained using the
bundler [2] software. For the ‘Arts Quad’ (ARQ) and ‘San
Francisco’ (SNF) data sets, the relative rotations Rij have been
provided by the authors of [11]3. For other datasets used, both
the raw images as well as estimated relative rotations are pro-
vided by the authors of [9]4. All these data sets come with an
estimate obtained using incremental BA which we have used as
the ground truth in our experiments. The number of cameras in
the largest connected component of these data sets is indicated
in the second column ‘# Camera’. The third column ‘# Edge’
indicate the number of relative rotation estimates available within
these connected components. However, the ground truth results
are not available for all the connected cameras. The number of
cameras for which the ground truth is available is indicated under
the column ’# Ground truth’. Only these cameras for which the
ground truth is available can be used to evaluate the accuracy of
any algorithm. We note here that while we ran both our method
and the Weiszfeld method of [13] on all the cameras in the largest
connected component, the method of DISCO [11] first eliminates
some of the cameras and edges from a connected component and
therefore solves for a much smaller number of cameras compared
to us. We have evaluated the level of data corruption present in
the relative rotation estimates of different data sets. To do so, we
have estimated the relative rotations along the connecting edges
from the known ground truth and compared these values to the
measured relative rotations. The mean, median and RMS error
obtained in this manner is also indicated in Table 2. We also
have tabulated the percentage of edges having errors greater than
10◦, 30◦, 60◦ and 90◦. Taken together, these statistics provide
information about the amount of noise and outliers present in
individual data sets. For example, of the data sets considered,
we see that ‘San Francisco’ (SNF) is the cleanest data set, while
‘Madrid Metropolis’ (MDR) is the most corrupted data set.

Different robust loss functions: We have experimented with
a wide variety of well-known robust loss functions to solve
the problem of relative rotation averaging. We have chosen the
parameter α (please see Table 1) to be equal to 5◦ with appropriate
tuning parameters [23] wherever applicable. In Table 3, we show
the median errors for these different loss functions tested on large-
scale real-world data sets by running Algorithm 3. We also mark

2. http://phototour.cs.washington.edu/datasets
3. http://vision.soic.indiana.edu/disco
4. http://www.cs.cornell.edu/projects/1dsfm/

Fig. 4. Testing the statistical efficiency of different loss functions on
synthetic datasets. See text for details.

the best result for each of the data sets in bold. The computation
times for these loss functions are tabulated in Table 4. We find
that ` 1

2
and Geman-McClure consistently yield smaller median

error compared to the other lost functions, while there is no
significant difference in computational time amongst the different
loss functions.

Statistical efficiency: We have also tested for the statistical
efficiency of different robust loss functions on synthetic datasets.
Since both ` 1

2
and Geman-McClure provide similar performance

on real datasets, our experiment on the synthetic dataset is
designed to help choose between them. For this experiment, we
chose the number of cameras to be 100 where the ground truth
rotations are picked randomly. Relative rotations are generated
from these ground truth rotations and are perturbed with different
amount of noise. In this experiment, only 50% of relative rotations
or edges in the view-graph are used and all results are averaged
over 25 trials. Figure 4(a) shows the performance of different
loss functions at different noise levels (0 to 10 degrees) when no
outliers are present. Expectedly, the `2 loss function provides the
best result whereas our `1 method and the Weiszfeld algorithm
of [13] give the same results as they minimize the same loss
functions. These results are slightly poorer than `2 loss function
and are closest to the quality of the `2 loss function, i.e. `1 has
the best statistical efficiency. While ` 1

2
has poorer statistical

efficiency, the Geman-McClure loss function performs even
worse. Importantly, it will be noted that the performance of the
Geman-McClure loss function starts to degrade significantly
beyond the noise level of 5◦. This is because the parameter α of
the Geman-McClure loss function was chosen to be 5◦. Therefore,
when the noise level is lower than 5◦, virtually all edges are
treated as inliers and averaging is done over all edges, although
not in an optimal fashion. But when the noise level is greater than
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Dataset # # # Ground Ground truth fitting error
Camera Edge truth Mean Median RMS % > 10◦ % > 30◦ % > 60◦ % > 90◦

Ellis Island (ELS) 247 20297 227 12.50 2.89 27.43 27.5 12.3 4.6 2.0
Piazza Del Popolo (PDP) 354 24710 338 8.38 1.81 21.50 15.3 8.0 3.8 1.6
NYC Library (NYC) 376 20680 332 14.14 4.22 28.57 31.8 13.6 6.0 2.7
Madrid Metropolis (MDR) 394 23784 341 29.30 9.34 51.45 48.8 29.0 16.6 10.4
Yorkminster (YKM) 458 27729 437 11.16 2.68 27.42 19.2 9.6 5.2 3.0
Montreal Notre Dame (MND) 474 52424 450 7.51 1.67 21.26 13.0 6.3 3.0 1.6
Tower of London (TOL) 508 23863 472 11.58 2.60 28.28 19.9 10.3 5.5 3.2
Notre Dame (ND1) 553 103932 553 14.15 2.70 33.48 22.7 12.9 7.6 4.4
Alamo (ALM) 627 97206 577 9.09 2.78 21.73 17.9 7.3 3.3 1.7
Notre Dame (ND2) 715 64678 715 3.58 1.48 8.20 7.8 1.3 0.3 0.1
Vienna Cathedral (VNC) 918 103550 836 11.26 2.59 27.54 20.7 9.4 5.2 2.9
Union Square (USQ) 930 25561 789 9.02 3.61 19.23 22.8 5.8 2.2 1.1
Roman Forum (ROF) 1134 70187 1084 13.83 2.97 31.85 23.7 12.6 7.1 4.1
Piccadilly (PIC) 2508 319257 2152 19.09 4.93 37.40 35.9 19.3 9.9 5.2
Trafalgar (TFG) 5433 680012 5058 8.62 3.01 18.75 21.3 6.5 2.2 0.9
Arts Quad (ARQ) 5530 222044 4978 9.23 2.49 19.76 22.5 8.7 2.7 0.8
San Francisco (SNF) 7866 101512 7866 1.80 0.99 3.93 1.6 0.3 0.1 0.0

TABLE 2
Datasets and their accuracies.

Data Median Errors (in degrees)
set `2 `1 ` 1

2
Geman Huber Pseudo Andrews Bisquare Cauchy Fair Logistic Talwar Welsch

McClure Huber
ELS 3.91 1.35 1.15 1.08 1.75 1.68 1.37 1.30 1.47 1.86 1.73 1.37 1.39
PDP 9.93 4.64 2.62 2.16 4.97 5.17 2.32 2.31 2.99 5.90 5.11 2.11 2.42
NYC 7.17 2.07 1.40 1.43 3.01 2.68 1.87 1.89 2.32 3.04 2.82 2.19 1.95
MDR 11.40 4.25 3.08 4.52 5.12 5.12 6.20 6.26 4.44 6.02 5.17 5.41 6.47
YKM 8.04 1.85 1.62 1.70 2.64 2.35 1.95 1.93 2.12 2.62 2.42 2.06 1.94
MND 4.32 0.93 0.71 0.77 1.33 1.26 0.87 0.89 1.04 1.64 1.29 0.90 0.98
TOL 5.10 2.74 2.45 2.59 3.07 2.95 2.83 2.84 2.95 3.07 3.00 2.97 2.89
ND1 5.27 1.07 0.98 1.03 1.47 1.30 1.20 1.24 1.15 1.52 1.35 1.14 1.13
ALM 5.42 2.47 2.14 2.12 2.86 2.74 2.26 2.26 2.27 3.05 2.76 2.27 2.37
ND2 1.31 0.50 0.49 0.54 0.79 0.71 0.66 0.67 0.69 0.78 0.75 0.73 0.67
VNC 17.28 4.73 4.64 4.87 5.32 5.06 5.00 5.13 5.05 5.55 5.14 4.98 5.20
USQ 11.22 4.93 4.97 4.93 6.20 5.93 5.28 5.32 5.30 6.61 6.05 5.61 5.27
ROF 17.91 2.50 1.70 1.62 3.71 3.41 1.92 1.93 2.32 4.66 3.53 2.00 1.95
PIC 27.93 7.09 3.12 4.14 8.88 9.10 5.57 5.74 4.61 11.65 9.14 7.03 4.98
TFG 5.36 2.41 2.03 1.94 3.03 2.86 2.39 2.40 2.79 3.09 2.93 2.40 2.47
ARQ 10.38 3.36 2.54 1.97 4.48 4.10 2.44 2.45 3.44 4.88 4.23 2.46 2.85
SNF 6.63 3.64 3.56 3.05 5.12 4.62 4.40 4.40 4.49 4.84 4.85 4.83 4.38

TABLE 3
Errors (degree) of different robust cost functions.

Data Computational time (in seconds)
set `2 `1 ` 1

2
Geman Huber Pseudo Andrews Bisquare Cauchy Fair Logistic Talwar Welsch

McClure Huber
ELS 1 2 3 2 2 2 2 2 2 2 2 2 2
PDP 1 3 4 4 3 3 3 2 3 2 2 2 2
NYC 1 2 3 2 2 2 2 2 2 2 2 2 2
MDR 2 3 4 6 3 3 4 4 4 2 3 3 4
YKM 1 2 3 2 2 2 2 2 2 2 2 2 2
MND 4 9 10 8 8 8 6 6 7 8 8 6 6
TOL 1 2 3 2 2 2 2 2 2 2 2 2 2
ND1 18 27 32 32 24 24 27 27 21 22 24 27 24
ALM 10 26 33 31 21 21 26 26 23 19 21 24 26
ND2 4 9 13 10 6 7 10 9 9 6 7 7 8
VNC 19 30 41 70 25 25 23 23 27 25 25 18 27
USQ 2 3 8 13 3 3 5 5 6 3 3 2 5
ROF 12 13 17 12 10 10 10 10 10 10 10 9 9
PIC 168 515 620 1013 495 506 1196 1118 440 580 480 521 1749
TFG 715 864 1184 922 792 860 796 788 855 854 854 785 717
ARQ 151 175 208 232 154 159 204 203 164 154 154 204 190
SNF 289 300 294 300 296 296 306 305 293 294 294 292 290

TABLE 4
Computational time (second) of different robust cost functions.
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Data Median Error (degree) Iterations Computation Time (second)
set DISCO [11] Our Our Our

BP BP+`2 Weiszfeld Initial ` 1
2

DISCO Weiszfeld Initial ` 1
2

DISCO Weiszfeld Initial ` 1
2

[13] `1 [11] [13] `1 [11] [13] `1
ELS 5.54 1.82 1.66 1.86 1.15 20 154 12 5+19 470 21 1 3
PDP 12.11 5.25 3.35 5.12 2.62 20 90 12 5+19 583 17 1 4
NYC 9.12 2.59 2.43 3.03 1.40 20 331 10 5+15 446 63 1 3
MDR 12.12 6.64 4.37 5.95 3.08 20 149 19 5+19 560 30 2 4
YKM 26.17 2.34 2.73 2.53 1.62 20 66 11 5+12 641 16 1 3
MND 6.81 1.03 0.92 1.40 0.71 20 37 9 5+11 1608 10 2 10
TOL 10.38 2.89 2.73 3.14 2.45 20 136 12 5+17 479 34 1 3
ND1 7.48 1.31 1.04 1.53 0.98 20 63 14 5+11 4070 24 5 32
ALM 7.86 4.21 3.57 2.72 2.14 20 137 11 5+13 3917 55 4 33
ND2 — — 0.50 0.76 0.49 — 63 7 5+10 — 27 2 13
VNC 22.35 14.57 5.14 5.45 4.64 20 405 16 5+17 4085 222 8 41
USQ 26.27 7.50 13.54 5.92 4.97 20 498 18 5+53 466 221 4 8
ROF 35.36 13.69 2.11 3.62 1.70 20 205 16 5+17 1559 121 8 17
PIC 36.00 14.66 7.65 10.46 3.12 20 1055 39 5+28 15604 1635 156 620
TFG 91.02 91.62 13.20 3.03 2.03 20 1492 23 5+16 43616 5128 541 1184
ARQ 87.12 88.58 6.95 4.19 2.54 20 1271 20 5+20 5227 5707 437 208
SNF 54.38 3.61 15.85 4.35 3.56 20 881 11 5+13 1413 3186 632 294

TABLE 5
Comparison of our methods with the state-of-the-art DISCO [11] and Weiszfeld [13] methods. In this table, to obtain the results of DISCO we have
not used any prior knowledge. If priors are used then the median error of DISCO for Arts Quad dataset comes down to 10.08◦ and 4.77◦ before

and after the `2 optimization respectively. DISCO [11] failed on the ‘Notre Dame 715’ (ND2) dataset which is indicated as ‘—’.

5◦, some of the edges are treated as outliers and their influence
in the averaging is reduced. Therefore, the averaging is done on
a smaller number of edges resulting in poorer performance. This
experiment suggests that the use of the Geman-McClure loss
function requires appropriate knowledge of the noise level of the
data, whereas the use of ` 1

2
requires no such knowledge.

In Figure 4(b) we show the performance of different loss
functions for different noise levels in the presence of 20%
of outliers. In this case the `2 loss function has the worst
performance as it is not robust to outliers. We have not plotted
the curve for the `2 loss function in Figure 4(b) since its error
is significantly greater than the error range of the other loss
functions. In the presence of outliers, clearly ` 1

2
has the best

performance among all the loss functions. Therefore, as we do not
know the true noise level in real datasets, we recommend the use
of the ` 1

2
loss function for robust averaging of relative rotations.

Comparison with state of the art methods: In Table 5,
we compare the speed and accuracy of our method to the state
of the art DISCO [11] and Weiszfeld [13] methods. Although
our framework is generic enough to incorporate a variety of cost
functions, we have chosen ` 1

2
to compare with other state of the

art methods, because, as already seeen, ` 1
2

performs better than
other cost functions. Clearly, our method (` 1

2
) outperforms both

the state-of-the-art methods in terms of accuracy and speed.

Accuracy: In Table 5, we have marked the lowest
median errors in bold. Our ` 1

2
method consistently gives

lower median error than the other two methods. Note that
DISCO solves the problem of relative rotation averaging
in two phases: discrete belief propagation (BP) based
optimization using viewing directions, and continuous non-
linear optimization using Rodrigues parameters. While the
code for the BP optimization is available from the authors
(http://vision.soic.indiana.edu/projects/disco/), the code for
non-linear optimization is not available. We implemented this
non-linear optimization using the lsqnonlin routine of MATLAB

as specified in [35]. However, in our experience, this optimization
is found to be unsatisfactory. For a relatively small dataset like
‘Yorkminster’ (YKM) it took more than 3 hours to converge.
On most other data sets it either did not converge or reported
an ‘out of memory’ error when tested on a desktop with 16GB
ram. Therefore, we chose an alternative approach for evaluating
DISCO. We first perform the belief propagation optimization
using the code provided by the authors of [35] with the default
parameters. Guided by this estimate we remove outliers using a
threshold of 20◦ as stated in [35]. Finally, instead of performing
the non-linear optimization using the lsqnonlin routine, we have
used our proposed algorithm for relative rotation averaging with
an `2 loss function. The result is tabulated under the column
BP+`2. We remark here that using our `2 optimization instead
of the continuous optimization described in [11] is a favorable
alteration to the method of [11]. Note that since `2 cost function
is not robust to outliers, the final accuracy depends on how well
the belief propagation optimization of DISCO detects the outliers.
We see that for the first nine data sets in Table 2, i.e. ‘Ellis
Island’ (ELS) through ‘Alamo’ (ALM), the belief propagation
optimization of DISCO estimates the rotations reasonably well
which in turn helps the `2 optimization to result in small to
moderate median errors for the combined method ‘BP + `2’. For
other datasets, DISCO does not perform well. While our test for
‘Notre Dame 715’ (ND2) crashed, for the datasets from ‘Vienna
Cathedral’ (VNC) through ‘San Francisco’ (SNF), the belief
propagation optimization performed poorly. All of these results
are obtained without using any priors in the belief propagation
step of DISCO. While incorporating a prior for rotations
does improve performance (a median error of 10.08◦ for the
Arts Quad (ARQ) data set), such priors are not generally available.

From the performance of DISCO [11] in Table 5, we can draw
two important conclusions. The approach of ignoring the inherent
geometric structure of SO(3) and converting the robust rotation
averaging problem into one of label assignment through belief
propagation has significant drawbacks. Apart from demanding
large computational resources and a significant computational
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Data ELS PDP NYC MDR YKM MND TOL ND1 ALM ND2 VNC USQ ROF PIC TFG ARQ SNF
Sum of squares 1.15 2.62 1.40 3.08 1.62 0.71 2.45 0.98 2.14 0.49 4.64 4.97 1.7 3.12 2.03 2.54 3.56
alignment
Absolute sum 0.52 0.90 1.37 1.31 1.59 0.52 2.44 0.65 1.07 0.42 1.27 3.93 1.6 2.94 2.02 2.53 3.31
alignment

TABLE 6
Median error metric for different alignment methods. See text for details.

time, DISCO does not work well as the data set grows in size.
Moreover, even for smaller datasets, the fact that the median errors
for ‘BP + `2’ is always worse than that of our ` 1

2
approach is

further validation of the point made in Section 5 that for real
data, we cannot truly separate inliers and outliers. In contrast to
DISCO, the Weiszfeld method of [13] does utilize the geometric
structure of SO(3) and also sets up an appropriate cost function
to be minimized. However, the Weiszfeld method suffers from its
use of a distributed averaging approach. Apart from our earlier
discussion of the limitations of the Weiszfeld method, in Table 5,
we can see that the Weiszfeld method performs reasonably well
for smaller data sets, although it is always poorer in performance
when compared to our approach. However, as the data set grows
in size, the Weiszfeld method deteriorates in performance owing
to its slow convergence which is reflected in both higher median
error values as well as large computational times required. In all
cases, we can note that our approach of using a batch estimation
with an ` 1

2
loss function provides very good quality estimates in

an efficient manner.
Note that while both our method with an `1 loss function and

the Weiszfeld method optimize the same cost function, results
of our method with the `1 loss function (column `1 of Table 3)
and results of the Weiszfeld method (column ‘Weiszfeld’ of
Table 5 are different. This difference arises due to the optimization
approaches leading to different termination criteria. On the one
hand, we terminate our method when the average update of all
camera vertices is less than 0.001 radians. On the other hand,
since the Weiszfeld method has poor convergence behavior, we
allow it a more relaxed termination criterion of the update for
all vertices being less than 0.001 radians. The Weiszfeld method
would perform even more poorly if we were to use the same
termination criterion as our approach. However, even with this
relaxed criterion, Weiszfeld method often fails to reach very close
to the optima. Thus, to go closer to the optima we need to choose
an even smaller termination threshold. But smaller termination
thresholds increase the accuracy of Weiszfeld method slightly
at the cost of a huge increase of computation time. Therefore,
the chosen threshold for the Weiszfeld method is the one for
which Weiszfeld method produces accurate enough result within
reasonable time. Further, the above issue is an intrinsic problem of
any distributed averaging. Such averaging often reaches a solution
when individual update of any camera parameter do not yield any
significant improvement of the cost function. Thus, such methods
prematurely terminate in those configurations. However, our opti-
mization strategy finds a joint update of all the cameras that gives
significant improvement of the cost function and therefore can get
out of such configurations.

Different comparison methods: Before we proceed any
further, we wish to draw attention to an important issue with
regard to the method of determining the quality of a result. To
analyze the accuracy of a result, we need to first align it to the
ground truth rotations in a common frame of reference. While

this alignment is done using the averaging of absolute rotations
we can choose different loss functions to determine the cost
function to be minimized. In our experiments we have used the
sum of squares loss functions (analogous to `2) for the purpose
of alignment. Alternatively, one may also use the sum of absolute
errors (analogous to `1), which can be seen to be favorable for
the median error metric that is often reported in the literature.
However, we believe that the sum of absolute errors can result
in misleading interpretations of the quality of relative rotation
averaging results. Consider the case where in a result a certain
fraction of the estimated rotations are grossly erroneous. The
approach of aligning with respect to the ground truth using the
sum of absolute errors will ignore these rotations and result in a
low estimate for the median rotation error. This low error is of
course misleading since some of the rotations are grossly wrong.
In contrast, our choice of using the sum of squared errors as
the loss function for alignment will faithfully report the overall
quality of the estimate, even when the measure being reported is
the median error. In the interest of completeness, in Table 6 we
show a comparison between the measured median errors for both
the sum of squared and sum of absolute errors based alignment
for our ` 1

2
optimization across all the datasets. As can be seen, the

median error reported is always favorable when we use the sum of
absolute errors for aligning the estimated rotations with the ground
truth. For these reasons, in the results reported in Table 5, we use
the sum of squares error for alignment.

Speed: In Table 5, we also have tabulated the time taken by
different methods. Our method is found to be consistently faster
than other state-of-the-art methods. Please note that while our
method and the Weiszfeld method are tested using a single thread
MATLAB implementation on a 2.67GHz desktop, the method of
DISCO is tested on a 36 node cluster where each node consists
of 2 2.67GHz quad-core processors. Therefore, on a true basis of
comparison of computational cost, the method of DISCO is the
most expensive method by a significant degree.

Error Distribution: In addition to the comparison in Table 5,
in Figure 5, we present a more detailed interpretation of the
relative performance of different methods on the ‘San Francisco’
(SNF) data set which is the largest data set we have used. In
Figure 5(a), we compare the distribution of errors for all methods
and the leftward shift of our error distribution implies that our
rotation estimates are significantly superior to that of DISCO and
the Weiszfeld method. Another view of the same comparison
can be obtained by considering the cumulative distributions of
the individual methods as shown in Figure 5(b). Our cumulative
distribution curve can be seen to be significantly higher (i.e. better)
compared to the other two methods.

Convergence Rate: In Figure 5(c), we show the convergence
behavior of the Weiszfeld method of [13] and our method
by plotting the median error as a function of computational
time. Note that the scale for the iterations is logarithmic as the
Weiszfeld method takes 3186 seconds to converge while our
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(a) Error Histograms

(b) Precision-Recall

(c) Convergence Rate

Fig. 5. Comparison of our methods with DISCO [11] and Weiszfeld
method [13] on the ‘San Francisco’ (SNF) data set. (a) shows the
histograms of errors of individual camera rotation estimates for differ-
ent methods; (b) represents the fraction of errors below a given error
threshold; (c) plots the median error vs. computational time for the
Weiszfeld method and our method. Note that the scale for time (x-axis)
is logarithmic.

method converges significantly faster. The comparative behaviour
of the convergence curves is demonstrable evidence that the
Weiszfeld update is unsuitable for large graphs and we should use
a joint update of all rotations as is done by our method.

Finally, a comparison of our relative rotation averaging method
with a Levenberg-Marquardt based method implemented using
Ceres solver (http://ceres-solver.org/) shows the superiority of our
method in terms of the accuracy and efficiency but the comparison
is beyond the scope and page-limit of the paper.

7 CONCLUSION

We have developed an efficient method for robust averaging of
relative rotations. Our approach admits the use of different robust
loss functions. In algorithmic terms, our approach carries out a
joint estimation using IRLS that works in the Lie algebra of
the rotation group SO(3). Our method significantly outperforms
existing approaches in the literature both in terms of speed and
accuracy as demonstrated on a large number of real-world data
sets.

APPENDIX
FIRST ORDER EXPANSION OF rij

In this Appendix, we derive the first order expansion of rij for
Equation 17. Consider two rotations u and v in their axis-angle
forms s.t. θ = ||u|| and φ = ||v||. Their quaternion forms are[
cos
(
θ
2

)
, g(θ)2 u

]
and

[
cos
(
φ
2

)
, g(φ)

2 v
]

respectively, where

g(x) =

{
sin(x/2)
x/2 if x 6= 0

1 if x = 0
.

Note that, g′(0) = 0. The composition of u operating after
v can be written using the quaternion multiplication rule as[(

cos
(
θ
2

)
cos
(
φ
2

)
− g(θ)g(φ)

4 uTv
)
,
(
au

2 + bv
2 + cu×v

4

)]
where a = cos

(
φ
2

)
g(θ); b = cos

(
θ
2

)
g(φ) and c = g(θ)g(φ).

Let us denote the axis-angle representation of this composition
of u operating after v as w, i.e. w = u ◦ v . Let ψ = ||w||.
Therefore, sin

(
ψ
2

)
w
ψ = au

2 + bv
2 + cu×v

4 . Now, for θ < π

and sufficiently small φ,
(

cos
(
θ
2

)
cos
(
φ
2

)
− g(θ)g(φ)

4 uTv
)

is
non-negative and then we can write

w = 2
sin−1 (d)

d

(
a

u

2
+ b

v

2
+ c

u× v

4

)
(25)

where d =
∣∣∣∣au

2 + bv
2 + cu×v

4

∣∣∣∣
When we want to find the Jacobian of w with respect to v at the
point v = 0 for a given u, the argument or independent variable
is v, and u is treated as a parameter. This Jacobian is given by
J(w(0))=mn + pqT , where

m =

[
2

sin−1 d

d

]
v=0

=
2

g(θ)
(26)

n =

[
J
(
a

u

2
+ b

v

2
+ c

u× v

4

)]
v=0

=
1

2
cos

(
θ

2

)
I3 +

1

4
g(θ)[u]× (27)

p =

[
a

u

2
+ b

v

2
+ c

u× v

4

]
v=0

(28)

=
g(θ)

2
u (29)

q =

[
∇
(

2
sin−1 d

d

)]
v=0

= 2

[ d√
1−d2 − sin−1 d

d2
∇d
]

v=0

= 2

[( d√
1−d2 − sin−1 d

d3

)
J
(
a

u

2
+ b

v

2
+ c

u× v

4

)
(
a

u

2
+ b

v

2
+ c

u× v

4

)]
v=0

=
g(θ)− cos

(
θ
2

)
2 sin2

(
θ
2

) u (30)

Therefore,

J(w(0)) = mn + pqT = αI3 + (1−α)
uuT

θ2
+

1

2
[u]× (31)
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where

α =
cos
(
θ
2

)
g(θ)

(32)

Equation 31 holds true for θ 6= 0. Further, it is trivial to show that
Equation 31 holds true for θ = 0 if we set u

θ = 0. Similarly, if
w is the composition of v operating after u, i.e. w = v ◦ u, then
Jacobian of w with respect to v at v = 0 can be written as

J (w (0)) = αI3 + (1− α)
uuT

θ2
− 1

2
[u]× (33)

Therefore, the first order expansion of rij (∆ΩV) =
ω (R (−∆ωj) R (∆ωij) R (∆ωi)) can be written as

ω (R (−∆ωj) R (∆ωij) R (∆ωi))

= αij(∆ωi −∆ωj) + (1− αij)
∆ωij∆ωTij

θ2
ij

(∆ωi −∆ωj)

+
1

2
[∆ωij ]×(∆ωi + ∆ωj) (34)

where θij = ||∆ωij || and αij =
cos

(
θij
2

)
g(θij)

.
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