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Motivation

Motivation

3D data and noise
e 3D data is easy to acquire in recent years:

e Dense multiview stereo using RGB images.
e Depth cameras.

e Significant amount of noise

° [Denoising step is necessary.j
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Multiview stereo Depth cameras
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Motivation

3D Mesh Denoising

Notations:
e M = (V,Ep, Fp) - noisy mesh
o V - set of vertex positions (isotropic Gaussian
noise added)
o Ey - set of edges
o Fp - set of faces

° n,V - normal at vertex v;
° nj’-: - normal on face f;

e Ny (+) - vertex neighbourhood
o NE(+) - face neighbourhood

@~ - an estimate of true value

[Problem: Given M, find \7}
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Motivation

Classes of mesh denoising methods

Existing methods:

@ (Local methods | - Correction is applied locally and iteratively.

Examples - Field, 1988; Taubin, 2001; Fleishman et al., 2003; Sun et al.,
2007; Sun et al., 2008; Zheng et al., 2011.

@ ( Global methods | - Global cost function is minimised.

Examples - Hoppe et al., 1993; Desbrun et al., 1999; Ohtake et al., 2002;
Ji et al., 2005; Nealen et al., 2006; Liu et al., 2007; Zheng et al., 2011;
He and Schaefer, 2013; Cheng et al., 2014; Wang et al., 2014; Zhang et
al., 2015.

Sk. Mohammadul Haque, Venu Madhav Govindu Global Mesh Denoising with Fairness



Motivation

Limitations of existing methods

Denoising restricted to the direction of the surface normal

@ Ignore the true distribution of
noise.

@ Move a mesh vertex along the
normal direction.

@ Residual noise in the tangent
planes

= Severe distortion of faces Noisy surface

= Often face flipping

A typical example
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Motivation

Limitations of existing methods

Denoising restricted to the direction of the surface normal

@ Ignore the true distribution of

noise.
AR
@ Move a mesh vertex along the Iy
normal direction. 24

@ Residual noise in the tangent
planes

= Severe distortion of faces Denoised surface -
= Often face flipping
-->
-—>

A typical example
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Motivation

Need Face Fairness!

Face Fairness

@ Regularity of face shapes

@ Absence of flipped faces

NNARR
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Irregular faces of denoised mesh of|
a cube. Left image: Sun et al.,
2007. Right image: Desired result.
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Flipped faces of a denoised mesh. Left
image: Sun et al., 2007. Right image:
L Desiredresult. |
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Motivation

Limitations of existing methods

Local methods - How many times to apply?
@ Usually no convergence to desired solution.

@ Difficulty in defining the number of times the filter to be applied
for optimal denoising.

@ Need to look at the actual denoised mesh to decide to stop.
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Motivation

Limitations of existing methods

Other issues

@ Significant implicit volume shrinkage.

° [Explicit volume restoration required.]

@ Simpler methods : Smoothing over surface features such as
edges and corners.
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Our Method

Our contribution

[A global 3D mesh denoising method]

Properties:
@ Global formulation.

@ Minimises sparse, quadratic cost functions.
o Yields efficient solutions.

@ Allows for vertex correction in all directions.
@ Enforces a novel face fairness penalty that preserves face shapes.
@ Good implicit volume preservation property.

@ Sharp feature preserving property.
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Our Method

Our proposed method

Two steps:

(1) [Normal MoIIification]
- Robust global anisotropic surface normal
denoising.

Q [Vertex Correction]
- Robust global anisotropic vertex correction with
face fairness.
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Our Method

Normal mollification

@ Global formulation. Noisy Mesh
@ Depends only on the variance R
o Worl Normal
Mollification
@ For ¢
our « ‘l’
| Noisy Vertices
o ) "
Mollified
e s penalty Face Normals
F =F
g wj 24, ( n;,n; )

JENE()
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Our Method

Normal mollification

@ Minimise Noisy Mesh
Normal
N Ne Mollification
E d <I‘IF nF) +/\N E E W d (AF A,F> l'
i=1 i=1 je N (i) Noisy Vertices
+
Mollified
Data Smoothness Face Normals

such that HnFHQ_l =1,2,---, NF.
o Gradient Projection Method:
o Converges within 10-15 iterations.
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Vertex correction

o Global formulation.

@ Depends only on the variar
@ Our cost function has three

© Quadratic data penalty d,

@ Quadratic anisotropic L:

o Bilateral weighting =

@ Novel face fairness term dY(V, V):

@ Denoising in the tangent plane about a vertex.
o Carefully considers edges and boundaries.

= KV = Vo)ll3-
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Our Method

Vertex correction

@ Minimise

Noisy Vertices

= +
Mollified

Face Normals

V= <I+>\LTL+77KTK)71 (V+17KTKVC) y
Vertex

Correction

—

z
Denoised Mesh

o/Solved using efficient sparse linear solvers.
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Results

Result: Synthetic Data

Comparison of denoising performance
l Object \ Error metric \ Noisy \ Fleishman | Jones \ Sun \ Zheng \ Ours ‘

a' Mean NE (°) [ 17.84 | 1584 | 8.10 [ 0.64 | 1.00 | 0.46

O Mean NE (°) [ 2547 [ 957 [ 6.78 | 562 | 455 | 3.05
3

‘ Mean NE (°) [ 1741 [ 1408 [ 16.91 [ 2.87 [ 2.17 [ 4.80

i Mean NE (°) [ 20.82 | 13.66 | 14.03 [ 13.65 | 13.32 | 8.03

p
Normal angle error (NE) and vertex position Euclidean error (VPE)
‘NA’ denotes ‘Not Available'.

4%+ | Mean NE(°) [ 2448 [ 905 [ 8.02 [ 828 [ 827 | 9.09
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Results

Result: Synthetic Data

Comparison of denoising

performance

l Object \ Error metric \ Noisy \ Fleishman

Jones\ Sun \ Zheng\ Ours ‘

.' Mean VPE [ 0.034 [ 0.060 [ 0.036 [ 0.026 [ NA [0.013

O Mean VPE [ 0.040 | 0079 [0.038]0.032] NA [0.017
|

E‘ Mean VPE [ 0.010 [ 0.016 [ 0.038 [0.009 [ NA [ 0.009
£

é’r‘ Mean VPE ]0.034 [ 0.030 [ 0.030 [ 0.029 [ NA ] 0.025

ok MeanVPE ] 0.167 [ 0.154 [ 0.144 [ 0141 [ NA ] 0.124

Normal angle error (NE) and vertex position Euclidean error (VPE)

‘NA’ denotes ‘Not Available’.
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Results

Result: Synthetic Data

Bunny Face (N, = 15861, Ng = 31001)

Original Noisy Fleishman
Mesh Mesh et al. 2003

y

Our method

Jonesetal. Sunetal. Zhengetal.
2003 2007 2011
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Results

Results: Real Data

Person (Ny = 46815, Np = 91392, Microsoft Kinect depth
camera)

Sun et al., 2007 Our method
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Results

Results: Real Data

Clay Pot (Ny = 108731, Nr = 216108, Intel Realsense depth
camera)

Noisy Mesh Fleishmanetal. Jonesetal.2003  Sun et al. 2007 Our method
2003
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Results

Results: Real Data

Sculptural Pillar (Ny = 185546, Ng = 360814, multiview stereo)

Noisy mesh Fleishman et al., 2003 Sun et al., 2007 Our method
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Conclusion

Conclusion

A two-step denoising method that globally solves for both
normal mollification and vertex correction.

Our vertex correction step accounts for noise in all
directions.

Incorporates a novel face fairness penalty.

Ability to provide good mesh denoising while preserving
face fairness is demonstrated.

The superiority of our approach over other relevant
methods is established.
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Conclusion

Thank Youl
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Conclusion

Normal mollification

@ Minimise
Ne Ne
> do (AF,nf)+and>0 Yo wids (AFAF) subject to [[AFI° =1,i=1,2,-+, N¢
i=1 i=1 jENE(i)

where Ay is a regularising parameter depending on the noise variance and the
face neighbourhood operator N (i) is the set of faces sharing a common vertex

with f; and
F ~F\ _ (nFT F t) 1anT F>t
Wij nj , N; =
0 otherw1se

where t is a threshold.
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Conclusion

Vertex Correction

Global Laplacian
@ Anisotropic in nature, defined along the normal directions at the vertices.

@ For each vertex v;,

ajb; F.T
L) R [ L R
jenuy | (L+ b)) > 3 <J ’ )
JENV(i)

(Vi _ (Vh tvpt+ Vj3)> (1)

@ Anisotropic bilateral weights:

2
(n] 2vs) Ik
aj = exp fT , by = exp 7? .
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Conclusion

Vertex Correction

Face fairness penalty

@ For a single denoised vertex V;,

2
df (@) = || =n¥n) 1)@ —ve)

(2
Vc,i - centroid of the Ny (i) around the vertex v;

0 ifv;eVB
=<0 elseif B<0
B otherwise

8= min (nfT

= n
paeNy (i) ©

5 — &) and ¢ is a small positive value.

V= (1+AL7L+7KTK) - (V+7KTKV) .

where K is formed from Eqn. 2 and V. is the concatenated vector formed from
Ve,iri =1,2,---, Ny.
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