Global Mesh Denoising with Fairness

Sk. Mohammadul Haque, Venu Madhav Govindu

Indian Institute of Science, Bengaluru, India

3DV 2015, Lyon, France

Presentation Outline

э

Motivation

3D data and noise

- 3D data is easy to acquire in recent years:
 - Dense multiview stereo using RGB images.
 - Depth cameras.
- Significant amount of noise
- (**Denoising step** is necessary.

Depth cameras

Sk. Mohammadul Haque, Venu Madhav Govindu

Global Mesh Denoising with Fairness

Motivation

3D data and noise

- 3D data is easy to acquire in recent years.
 - Dense multiview stereo using RGB images.
 - Depth cameras.
- Significant amount of noise
- Denoising step is necessary.

Multiview stereo

Depth cameras

Sk. Mohammadul Haque, Venu Madhav Govindu Global Mesh Der

Global Mesh Denoising with Fairness

3D Mesh Denoising

Notations:

- $\textbf{M}=(\textbf{V},\textbf{E}_0,\textbf{F}_0)\,$ noisy mesh
 - V set of vertex positions (isotropic Gaussian noise added)
 - E₀ set of edges
 - **F**₀ set of faces
- \mathbf{n}_i^V normal at vertex \mathbf{v}_i
- \mathbf{n}_j^F normal on face \mathbf{f}_j
- $\mathcal{N}_{V}\left(\cdot
 ight)$ vertex neighbourhood
- $\mathcal{N}_{F}\left(\cdot\right)$ face neighbourhood
- $\widehat{\cdot}$ an estimate of true value

Problem: Given **M**, find $\widehat{\mathbf{V}}$.

V

Classes of mesh denoising methods

Existing methods:

• (Local methods) - Correction is applied locally and iteratively.

Examples - Field, 1988; Taubin, 2001; Fleishman *et al.*, 2003; Sun *et al.*, 2007; Sun *et al.*, 2008; Zheng *et al.*, 2011.

• (Global methods) - Global cost function is minimised.

Examples - Hoppe *et al.*, 1993; Desbrun *et al.*, 1999; Ohtake *et al.*, 2002; Ji *et al.*, 2005; Nealen *et al.*, 2006; Liu *et al.*, 2007; Zheng *et al.*, 2011; He and Schaefer, 2013; Cheng *et al.*, 2014; Wang *et al.*, 2014; Zhang *et al.*, 2015.

- 4 周 ト 4 月 ト 4 月

Denoising restricted to the direction of the surface normal

- Ignore the true distribution of noise.
- Move a mesh vertex along the normal direction.
- Residual noise in the tangent planes

 \Rightarrow Severe distortion of faces

⇒ Often face flipping

Denoising restricted to the direction of the surface normal

- Ignore the true distribution of noise.
- Move a mesh vertex along the normal direction.
- Residual noise in the tangent planes

 \Rightarrow Severe distortion of faces

⇒ Often face flipping

Denoising restricted to the direction of the surface normal

- Ignore the true distribution of noise.
- Move a mesh vertex along the normal direction.
- Residual noise in the tangent planes

 \Rightarrow Severe distortion of faces

⇒ Often face flipping

Denoising restricted to the direction of the surface normal

- Ignore the true distribution of noise.
- Move a mesh vertex along the normal direction.
- Residual noise in the tangent planes

 \Rightarrow Severe distortion of faces

⇒ Often face flipping

Need Face Fairness!

Face Fairness

- Regularity of face shapes
- Absence of flipped faces

Image: A = A

Local methods - How many times to apply?

- Usually **no convergence** to desired solution.
- Difficulty in defining the **number of times the filter** to be applied for optimal denoising.

< A > < 3

• Need to look at the actual denoised mesh to decide to stop.

Limitations of existing methods

Other issues

- Significant implicit volume shrinkage.
 - (Explicit volume restoration required.)
- Simpler methods : **Smoothing over surface features** such as edges and corners.

- **→** → **→**

Presentation Outline

э

Our contribution

A global 3D mesh denoising method

Properties:

- Global formulation.
 - Minimises sparse, quadratic cost functions.
 - Yields efficient solutions.
- Allows for vertex correction in all directions.
- Enforces a **novel face fairness penalty** that preserves face shapes.
- Good implicit volume preservation property.
- Sharp feature preserving property.

・ 同・ ・ ヨ・

Our proposed method

Two steps:

(Normal Mollification)

- **Robust global anisotropic** surface normal denoising.

2

Vertex Correction

- Robust global anisotropic vertex correction with face fairness.

э

< 日 > < 同 > < 三 > < 三 >

Normal mollification

Minimise

$$\sum_{i=1}^{N_F} d_o\left(\widehat{\mathbf{n}}_i^F, \mathbf{n}_i^F\right) + \lambda_N \sum_{i=1}^{N_F} \sum_{j \in \mathcal{N}_F(i)} w_{ij}^2 d_s\left(\widehat{\mathbf{n}}_j^F, \widehat{\mathbf{n}}_i^F\right)$$

Data

Smoothness

such that $||\widehat{\mathbf{n}}_{i}^{F}||_{2}^{2} = 1, i = 1, 2, \cdots, N_{F}.$

• Gradient Projection Method:

• Converges within 10-15 iterations.

э

- 4 同 6 4 日 6 4 日 6

Vertex correction

Presentation Outline

Result: Synthetic Data

Comparison of denoising performance

Object	Error metric	Noisy	Fleishman	Jones	Sun	Zheng	Ours
	Mean NE ($^{\circ}$)	17.84	15.84	8.10	0.64	1.00	0.46
	Mean NE (°)	25.47	9.57	6.78	5.62	4.55	3.05
	Mean NE ($^{\circ}$)	17.41	14.98	16.91	2.87	2.17	4.80
K	Mean NE ($^{\circ}$)	29.82	13.66	14.03	13.65	13.32	8.03
X	Mean NE (°)	24.48	9.05	8.02	8.28	8.27	9.09

Normal angle error (NE) and vertex position Euclidean error (VPE) 'NA' denotes 'Not Available'.

・ロト ・同ト ・ヨト ・ヨト

Result: Synthetic Data

Comparison of denoising performance

Object	Error metric	Noisy	Fleishman	Jones	Sun	Zheng	Ours	
	Mean VPE	0.034	0.060	0.036	0.026	NA	0.013	
	Mean VPE	0.040	0.079	0.038	0.032	NA	0.017	
	Mean VPE	0.010	0.016	0.038	0.009	NA	0.009	
K								
	Mean VPE	0.034	0.030	0.030	0.029	NA	0.025	
Sand								
n	MeanVPE	0.167	0.154	0.144	0.141	NA	0.124	
Normal angle error (NE) and vertex position Euclidean error (VPE)								

Image: A image: A

- ∢ ≣ ▶

'NA' denotes 'Not Available'.

Result: Synthetic Data

Bunny Face ($N_V = 15861, N_F = 31001$)

Sk. Mohammadul Haque, Venu Madhav Govindu Global Mesh Denoising with Fairness

Results: Real Data

Person ($N_V = 46815$, $N_F = 91392$, Microsoft Kinect depth camera)

Results: Real Data

Clay Pot ($N_V = 108731, N_F = 216108$, Intel Realsense depth camera)

イロン 不同 とくほう イロン

3

Results: Real Data

Sculptural Pillar ($N_V = 185546, N_F = 360814$, multiview stereo)

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Presentation Outline

э

Conclusion

- A two-step denoising method that globally solves for both normal mollification and vertex correction.
- Our vertex correction step accounts for **noise in all directions**.
- Incorporates a novel face fairness penalty.
- Ability to provide **good mesh denoising while preserving face fairness** is demonstrated.
- The **superiority of our approach** over other relevant methods is established.

Thank You!

Sk. Mohammadul Haque, Venu Madhav Govindu Global Mesh Denoising with Fairness

æ

- ∢ ≣ ▶

-∢∄⊁ ∢≣⊁

Normal mollification

Minimise

$$\sum_{i=1}^{N_{F}} d_{o}\left(\widehat{\mathbf{n}}_{i}^{F}, \mathbf{n}_{i}^{F}\right) + \lambda_{N} \sum_{i=1}^{N_{F}} \sum_{j \in \mathcal{N}_{F}(i)} w_{ij}^{2} d_{s}\left(\widehat{\mathbf{n}}_{j}^{F}, \widehat{\mathbf{n}}_{i}^{F}\right) \text{ subject to } \left|\left|\widehat{\mathbf{n}}_{i}^{F}\right|\right|^{2} = 1, \, i = 1, 2, \cdots, N_{F}$$

where λ_N is a regularising parameter depending on the noise variance and the face neighbourhood operator $\mathcal{N}_F(i)$ is the set of faces sharing a common vertex with \mathbf{f}_i and

$$w_{ij}\left(\widehat{\mathbf{n}}_{j}^{F}, \widehat{\mathbf{n}}_{i}^{F}\right) = \begin{cases} \left(\widehat{\mathbf{n}}_{j}^{F,T} \widehat{\mathbf{n}}_{i}^{F} - t\right) & \text{if } \widehat{\mathbf{n}}_{j}^{F,T} \widehat{\mathbf{n}}_{i}^{F} > t \\ 0 & \text{otherwise} \end{cases}$$

Image: A image: A

where t is a threshold.

Vertex Correction

Global Laplacian

- Anisotropic in nature, defined along the normal directions at the vertices.
- For each vertex \mathbf{v}_i ,

$$\mathbf{L}_{i}\left(\mathbf{v}_{i}\right) = \sum_{j \in \mathcal{N}_{V}(i)} \left(\frac{a_{j}b_{j}}{\left(1+b_{j}\right)\sum_{j \in \mathcal{N}_{V}(i)}a_{j}}\right) \left(\mathbf{n}_{j}^{F}\mathbf{n}_{j}^{F,T}\right) \\ \left(\mathbf{v}_{i}-\frac{\left(\mathbf{v}_{j_{1}}+\mathbf{v}_{j_{2}}+\mathbf{v}_{j_{3}}\right)}{3}\right)$$
(1)

- 4 同 6 4 日 6 4 日 6

э

Anisotropic bilateral weights:

$$\mathbf{a}_{j} = \exp\left(-rac{\left(\mathbf{n}_{j}^{T}\Delta\mathbf{v}_{ij}
ight)^{2}}{2\sigma_{1}^{2}}
ight), b_{j} = \exp\left(-rac{\left\|\Delta\mathbf{v}_{ij}
ight\|_{2}^{2}}{2\sigma_{2}^{2}}
ight).$$

Vertex Correction

Face fairness penalty

For a single denoised vertex v
_i

$$d_f^V(\hat{\mathbf{v}}_i) = \left\| r_i (\mathbf{I} - \mathbf{n}_i^V \mathbf{n}_i^{V,T}) (\hat{\mathbf{v}}_i - \mathbf{v}_{c,i}) \right\|_2^2$$
(2)

 $\mathbf{v}_{c,i}$ - centroid of the $\mathcal{N}_{V}(i)$ around the vertex \mathbf{v}_{i}

$$r_i = \begin{cases} 0 & \text{if } \mathbf{v}_i \in \mathbf{V}^B \\ 0 & \text{else if } \beta < 0 \\ \beta & \text{otherwise} \end{cases}$$

 $\beta = \min_{p,q \in \mathcal{N}_{V}(i)} (\mathbf{n}_{p}^{F,T} \mathbf{n}_{q}^{F} - \delta) \text{ and } \delta \text{ is a small positive value.}$ $\hat{\mathbf{V}} = \left(\mathbf{I} + \lambda \mathbf{L}^{T} \mathbf{L} + \eta \mathbf{K}^{T} \mathbf{K}\right)^{-1} \left(\mathbf{V} + \eta \mathbf{K}^{T} \mathbf{K} \mathbf{V}_{c}\right).$

where **K** is formed from Eqn. 2 and \mathbf{V}_c is the concatenated vector formed from $\mathbf{v}_{c,i}, i = 1, 2, \cdots, N_V$.