
Robust Feature-Preserving Denoising of 3D Point Clouds

Sk. Mohammadul Haque, Venu Madhav Govindu
Indian Institute of Science

Bengaluru, India
{smhaque,venu}@ee.iisc.ernet.in

Abstract

The increased availability of point cloud data in re-
cent years has lead to a concomitant requirement for high
quality denoising methods. This is particularly the case
with data obtained using depth cameras or from multi-view
stereo reconstruction as both approaches result in noisy
point clouds and include significant outliers. Most of the
available denoising methods in the literature are not suffi-
ciently robust to outliers and/or are unable to preserve fine-
scale 3D features in the denoised representations. In this
paper we propose an approach to point cloud denoising that
is both robust to outliers and capable of preserving fine-
scale 3D features. We identify and remove outliers by util-
ising a dissimilarity measure based on point positions and
their corresponding normals. Subsequently, we use a robust
approach to estimate surface point positions in a manner
designed to preserve sharp and fine-scale 3D features. We
demonstrate the efficacy of our approach and compare with
similar methods in the literature by means of experiments
on synthetic and real data including large-scale 3D recon-
structions of heritage monuments.

1. Introduction
In recent years, it has become significantly easier to

obtain 3D representations of real world scenes using either
depth scanners [12] or dense multi-view stereo methods [6]
that work on RGB images of a scene. In most cases, the
surface or scene being scanned is estimated in the form of
a set of unstructured 3D points known as a point cloud.
While obtaining such 3D representations has become
easier, owing to the limitations of either the sensors or the
estimation methods used, the point clouds are invariable
corrupted with significant amounts of noise as well as out-
liers. The denoising of point clouds is inherently difficult
since point sets do not directly provide information about
the surface topology. The problem of accurately estimating
an underlying surface representation is made even more
difficult due to the presence of outliers. In the case where

outliers are present, we need to identify and remove them
before further processing of the point cloud data since they
do not contain any information of the surface and would
deteriorate the performance of any denoising approach.

In this paper we present a novel approach to robustly
denoise point clouds while preserving fine-scale features.
We first develop an approach that aggregates comparisons
of individual points in a neighbourhood that enables us to
identify and remove outliers. Subsequently, we robustly
denoise the 3D points on the surface. Our approach to such
3D point repositioning encourages the careful delineation
and preservation of sharp and fine-scale 3D features of the
surface.

2. Related work
In the past two decades denoising of point clouds has

been extensively studied and some of the most popular
approaches of relevance to us are [9, 1, 17, 7]. However,
they generate smooth surfaces and blur the fine-scale
surface details. Moreover these methods are not designed
to work in the presence of outliers. Subsequent methods
that attempted to address these shortcomings include
the MLS method of [5] where the authors have used an
additional surface classification step to define a set of
smooth surfaces and hence avoid smoothing sharp features.
In [14], the authors propose a robust implicit MLS method
(henceforth RIMLS) by using kernel-based robust statistics
and incorporating it into the implicit MLS method. More
recently [18] introduced an `0-norm minimisation approach
for point cloud denoising. However, we have found that
`0-norm minimisation results in piecewise flat surfaces and
does not perform well on natural data in presence of mod-
erate level of noise. [19] presents a simultaneous denoising
and mesh topology optimisation for surface reconstruction.
In [20], the authors first generate an intermediate mesh
from the point cloud and then use bilateral mesh filtering
to denoise it. However, bilateral mesh filtering usually
blurs sharp features when input noise is moderate or

1

higher. [10] proposes a denoising method specifically
applicable to point clouds obtained from multiple view
stereo. Other works like [3, 21] use non-local filtering.
While we will discuss our method later, here we remark
that our method is similar to RIMLS [14] but there are
also some important differences. These denoising methods
cannot accurately recover well-defined fine-scale and sharp
surface features like edges and corners. In [18], the authors
use an additional step to recover such sharp features in the
denoised surface.

In our method, in addition to an effective procedure for
the detection of outliers, we also show that the aforemen-
tioned sharp features are recovered naturally in the denois-
ing step without requiring an additional step. The rest of
the paper is organised as follows: Section 3 describes the
details of our method whereas Section 4 present compara-
tive results on both synthetic and real datasets. In Section 5
we present some concluding remarks.

3. Our method

In this Section we present the details of the steps in-
volved in our robust point cloud denoising method. Our
method consists of the following sequence of procedures:

1. Robust outlier detection and removal (Section 3.1)

2. Bilateral normal mollification (Section 3.2)

3. Point set repositioning (Section 3.3)

In the robust outlier detection and removal step, the outliers
are detected and removed based on an initial estimate of the
point normals and the `2 distances between points in the
point cloud. In the bilateral normal mollification step, the
initial estimates of the point normals are mollified. Finally,
in the point set repositioning step, the point set is reposi-
tioned using the mollified point normals. The steps of our
methods are detailed below.

3.1. Robust outlier detection and removal

The detection and removal of 3D outliers is a classical
problem in computer vision and there is correspondingly a
very large body of literature. Many of the popular methods
rely on either a robust version of PCA e.g. [2] or RANSAC
[4]. Recently [13] proposed two methods for outlier de-
tection in point cloud data while [16] proposed a distance
based outlier detection method. While RPCA and sampling
based methods ([4], [13]) are computationally expensive,
distance based methods are not adequately robust. More-
over, we have found that [13] fails in detecting outliers
in the presence of additive Gaussian noise. Our proposed
method is based on a simple geometric intuition which we
develop using the following steps:

(a) Normals-based (b) Distance-based

Figure 1: Outlier detection

Neighbourhood assignment: We use a k-d tree
based nearest neighbour approach for assigning the neigh-
bours for each point. Specifically, consider a point cloud
V = {vi}Ni=1 where vi is the position of the ith point
in it and N is the total number of points. We define
the s-neighbourhood function N (i) for a point vi in V
as N (i) = {vj ∈ V| ‖vj − vi‖ ≤ ‖vk − vi‖ ,∀k /∈
N (i) and |N (i)| = s}. Although an optimal value of
s can be obtained theoretically using [11], we use a fixed
value of s = 128 in our experiments.

Initial point normal estimation: Since we need an
initial estimate of the point normals ni, we use weighted
PCA for this purpose. Specifically we compute the normal
ni for a point vi in the point cloud V as follows:

ni = argmin
n,nTn=1

∑
j∈N (i)

wijn
T
(
(vj − µi) (vj − µi)T

)
n

(1)
where µi is the co-ordinate-wise median of {vj}j∈N (i),

wij is the weight given to a neighbouring point vj . It is
known that in the presence of Gaussian distributed points
in space, wij = 1 is the optimum weighting. However, in
the presence of outliers this is not the case. In the presence
of outliers, we choose a weighting of wij = ‖vj − vi‖−α2
where α is a small positive constant. In our experiments, we
set α = 1.0. The proper orientation of the normals can be
fixed from the corresponding sensor location information.

Outlier detection: In our approach, we use two crite-
ria for detecting outliers. Firstly, we use a novel technique
based on the initial smooth estimate of the point normals.
Secondly, we classify a point vi as an outlier in a point
cloud V if that point is far enough and isolated from the
rest of the point cloud.

In the first step of normal-based outlier detection and
removal, we develop a measure for classifying points as in-
liers or outliers. In Figure 1a we consider a set of points,
which is sampled from a smooth surface (possibly with
noise) with two outliers. We now focus on the two points

vi and vk where vi is an outlier and vk is a point sam-
pled from the smooth surface that is in the neighbourhood
of vi. Clearly, since there are only two outliers with many
good samples in their neighbourhood, the initial normal ni
estimated at vi will be almost the same as the estimated
normal nk at vk i.e. nTi nk ' 1. Now if we decompose
the vector vik = vi − vk into two orthogonal compo-
nents v‖ik and v⊥ik as in Figure 1a where v

‖
ik =

(
vTiknk

)
nk

is the component along the normal nk at point vk and
v⊥ik = vik −

(
vTiknk

)
nk is the component orthogonal

to it, the ratio
∥∥∥v‖

ik

∥∥∥/‖v⊥
ik‖ will be much larger than 1 i.e.∥∥∥v‖

ik

∥∥∥/‖v⊥
ik‖ � 1. We define the dissimilarity DS (vk,vi)

of vi from vk as

DS (vk,vi) =
(
nTk ni

) ∥∥∥v‖ik∥∥∥∥∥v⊥ik∥∥+ ε
(2)

where ε is a small positive constant. The dissimilarity
DS (vk,vi) measures the amount of isolation of the point
vi from the surface defined around the point vk. We note in
passing that the dissimilarity DS (·, ·) is asymmetric in na-
ture. For each point vi, we accumulate all suchDS (vk,vi)
and compute the effective dissimilarity EDS (vi) as

EDS (vi) =

∑
k∈N (i)

DS (vk,vi)

|N (i)|
. (3)

If EDS (vi) is above a threshold ηn, it is classified
as an outlier. It is important to note that had there been
another surface from which vi was sampled and was not
actually an outlier, there would be a sufficient number of
neighbouring points for vi from that second surface in
the nearest neighbour set of vi and the EDS (vi) would
remain low. This would result in point vi being correctly
classified as an inlier.

Although the above normal-based technique removes
most of the outliers in the point cloud V, it may still con-
tain sparse clusters that are not part of the true surface point
cloud. To address this issue we use a distance-based out-
lier detection and removal step that can detect sparse sets
of outliers. As shown in Figure 1b, for any point vi, we
compute the median of the `2 distances dmed (vi) of neigh-
bouring points around vi from vi as

dmed (vi) = MEDIAN
(
{‖vik‖2}k∈N (i)

)
. (4)

We then use an absolute threshold ηd above which a
point is expected to be an outlier. We test the effective-
ness of our method on synthetic datasets, namely a cube, a
sphere and the well-known Stanford bunny. We add Gaus-
sian noise of standard deviation 100% of the average edge

length of the respective original meshes. We then corrupt
a varying percentage of the points into outliers (20-40%)
drawn from a larger Gaussian distribution of varying stan-
dard deviation (10-20%) of the original point cloud dimen-
sions. We compare our outlier detection method with two
methods that are implemented in the Point Cloud Library
(PCL) namely statistical outlier removal (SOR) [15, 16] and
radius outlier removal (ROR) [15]. We also compare with
MCMD_Z [13]1. We tune all other parameters to their op-
timal settings for each method. We measure the average
fraction of correct classification of the outputs from all the
methods over 5 noise and outlier realisations. Table 1 shows
their comparative performances. Figures 2, 3 and 4 shows
the visual comparison of outputs from the compared meth-
ods for outlier density of 40% with standard deviation of
20% of the respective point cloud dimensions. It is clear
that our method performs much better than the others, espe-
cially when the fraction of outliers increases. Also, it is im-
portant to note that the MCMD_Z method performs poorly
in detecting outliers in presence of Gaussian noise.

Input Model
Outliers Accuracy

D (%) S (%) SOR ROR MCMD_Z Ours

Cube 20 10 0.939 0.927 0.927 0.939

NP: 49154 40 20 0.880 0.905 0.703 0.926

Sphere 20 10 0.949 0.921 0.937 0.952

NP:40962 40 20 0.902 0.934 0.636 0.951

Bunny 20 10 0.941 0.928 0.890 0.959

NP:40245 40 20 0.949 0.933 0.670 0.969

Table 1: Comparative performances of SOR [15, 16], ROR
[15], MCMD_Z [13] and our method. D - density, S - stan-
dard deviation of outlier distribution, NP - number of points.
See text for details.

The performance of our outlier detection method is stud-
ied against varying amount of outliers on the same cube,
sphere and bunny data. Figure 5 shows the accuracy of
detecting outliers which are drawn from a larger Gaussian
distribution of standard deviation (10%) of the point cloud
dimensions with varying fraction of the points corrupted as
outliers. The inliers are corrupted with Gaussian noise of
standard deviation of average edge length of the original
meshes. In the presence of noise in the inliers, the accuracy
of our method remains above 0.85 even when the fraction
of outliers is at 0.5.

3.2. Bilateral normal mollification

Once outliers are removed from the input noisy point
cloud, it is ready for denoising. Formally, our denoising
problem can be stated as follows. An initial outlier-free

1We use MCMD_Z only and not MCMD_MD as the former is reported
to perform better.

Figure 2: Visual comparison of outputs of SOR [15, 16],
ROR [15], MCMD_Z [13] and our method on cube data
(49154 points) for outlier density of 40% with standard de-
viation of 20% of the point cloud dimensions in presence of
Gaussian noise of std. dev. of avg. edge length of original
meshes. First row shows the clean point cloud (blue boxed),
noisy point cloud (red boxed) and output from SOR respec-
tively. Second row shows the outputs from ROR, MCMD_Z
and our method (green boxed) respectively.

Figure 3: Visual comparison of outputs of SOR [15, 16],
ROR [15], MCMD_Z [13] and our method on sphere data
(40962 points) for outlier density of 40% with standard de-
viation of 20% of the point cloud dimensions in presence of
Gaussian noise of std. dev. of avg. edge length of original
mesh. First row shows the clean point cloud (blue boxed),
noisy point cloud (red boxed) and output from SOR respec-
tively. Second row shows the outputs from ROR, MCMD_Z
and our method (green boxed) respectively.

noisy point cloud V = {vi}Ni=1 is given where vi is the
ith noisy point position and N is the total number of points.
We would like to estimate the unknown true point cloud as
V̂ = {v̂i}Ni=1. Like RIMLS [14], our denoising method de-
pends on a clean set of the point normals {n̂i}Ni=1. Since the
normals estimated from the input point cloud are noisy, we
first mollify them in an iterative manner similar to RIMLS.

Figure 4: Visual comparison of outputs of SOR [15, 16],
ROR [15], MCMD_Z [13] and our method on bunny data
(40245 points) for outlier density of 40% with standard de-
viation of 20% of the point cloud dimensions in presence of
Gaussian noise of std. dev. of avg. edge length of original
mesh. First row shows the clean point cloud (blue boxed),
noisy point cloud (red boxed) and output from SOR respec-
tively. Second row shows the outputs from ROR, MCMD_Z
and our method (green boxed) respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6

0.8

0.85

0.9

0.95

1

Outlier density −−>

A
cc

u
ra

cy
 −
−

>

cube
sphere
bunny

Figure 5: Performance of our method with varying fraction
of points as outliers.

Specifically, in each iteration we use a bilaterally weighted
mollification of the normals as

n̂i ← normalise

 ∑
j∈N (i)∪i

φijn̂j

 (5)

where

φij = e
−

‖n̂j − n̂i‖2

σ2
r

+
‖vj − vi‖2

σ2
s

, (6)

normalise(·) scales a vector to unit length and σr and σs are
the normal and spatial scale parameters respectively. How-
ever in general, when sensor location information is not
available, the initial normals ni may be flipped, [14] sug-
gests to initialise n̂i with the weighted mean of the neigh-
bouring normals without considering the current normals

themselves as

n̂i ← normalise

 ∑
j∈N (i)

exp

(
−‖vj − vi‖2

σ2
s

)
nj

 .

(7)
Although this initialisation works well in low noise

condition, under considerable noise it inevitably leads to
smooth edges. Instead we do the following. For each nor-
mal ni, we aggregate the corresponding weights in Equa-
tion 5 as

αi =
∑

j∈N (i)

e
−

‖nj − ni‖2

σ2
r

(8)

βi =
∑

j∈N (i)

e
−

‖vj − vi‖2

σ2
s

(9)

We then flip the normal n̂i if αi < κ ·βi for a small positive
κ depending on the amount of noise.

3.3. Point set repositioning

Once we obtain the mollified normals {n̂i}Ni=1, we now
fit the points to them. To do so, we use a weighted point
update. Unlike methods that follows MLS, we use a simpler
point set fitting scheme. Our scheme is robust enough to
preserve fine features like edges and corners. Moreover, our
scheme actually enriches these fine features. For estimating
the new positions {v̂i}Ni=1 of the 3D points, we solve the
following minimisation

min
{ṽi}Ni=1

N∑
i=1

∑
j∈N (i)

γij

∥∥∥n̂iT (ṽi − ṽj)
∥∥∥2
2
+λ

N∑
i=1

‖ṽi − vi‖22

(10)
where

γij =
τij∑

j∈N (i) τij
, τij = exp

(
−‖ṽj − ṽi‖2

σ2
s

)
(11)

are the weights used to adaptively set the influence of the
neighbours, n̂i are the mollified normals, vi are the noisy
point positions and λ is a small positive stabilising param-
eter to ensure a stable solution. Since the weights γij de-
pend on the optimising variables ṽi, we solve this minimi-
sation iteratively using gradient-descent method and it usu-
ally converges within 5-30 iterations.

We note here that if a point lying on a plane moves a
little along any direction but remaining on the same plane,
then the surface does not change. Since the weights γij do
not depend on the normals n̂i, our minimisation allows the
points on the either sides of fine structures like edges and

corners to move towards them. This automatically defines
and enhances these sharp structures. In Figure 6, we show
the difference of allowing such a scheme on a noisy cube
point cloud in comparison to the RIMLS [14] method that
does not allow so. In our method, the edges are prominently
defined. This is in contrast to [18] where their method re-
quires an additional step to recover the fine structures.

Figure 6: Automatic recovery of fine structures in our point
set repositioning scheme when applied on a noisy cube data
as compared to the output from RIMLS [14]. Left to right:
the noisy point cloud, outputs from RIMLS and our scheme
respectively. Note the prominent straight edges recovered
by our method.

Point set upsampling: In the previous step, the points
that are not on the sharp features like edges and corners but
are located nearby are moved towards them. Hence, those
regions in the final denoised result may not contain dense
enough points. For rendering purposes, a sufficiently dense
point set is required. Hence, similar to the recent methods
like [18], one can optionally upsample the denoised point
set using Edge-Aware Resampling method [8] to obtain the
final ready-to-be-rendered denoised point cloud.

4. Results
In this Section, we present the evaluation of performance

of our denoising method as compared to relevant existing
methods in the literature both on synthetic point cloud data
and real point cloud data obtained from multi-view stereo
and depth scanner.

4.1. Synthetic data

We evaluate the performance of our method as com-
pared to similar relevant methods available in the literature,
namely [14] and [18]. We run synthetic experiments on
a dataset comprising the cube (49154 points), the sphere
(40962 points) and the bunny model (40245 points) by
adding Gaussian noise of standard deviation 100% of the
average edge-length of the corresponding original meshes.
We note here that in this particular experiment we do not
add any outliers. Parameters of all the methods are tuned
to their optimal settings. We measure the mean cloud-to-
mesh `2 distances from the corresponding denoised outputs
to the original clean meshes for each method. To do so,
we specifically ensured that the denoised outputs are suf-
ficiently dense enough. Table 2 shows the accuracies of
the results from different methods on the synthetic datasets.

Figure 7 shows the visual comparisons of the results ob-
tained from the compared methods. For the cube, it can
be observed that the recovered edges from our method are
very prominent. Also, for the sphere, it can be observed that
due to nature of the `0 norm, `0-method performs poorly in
retaining the spherical shape. From Figure 8, it can be ob-
served that the `0-method removes the fine details of the
surface of the bunny model and encourages a piecewise
flat surface. Moreover, from Table 2, it can be seen that
the mean cloud-to-mesh `2 distance of the denoised output
from RIMLS is higher than that of our method. This is due
to an increase in volume in the output of RIMLS method
with respect to the true model.

Input Model
Noise Std. Dev. Mean cloud-to-mesh `2 distance

(AEL) RIMLS `0 Ours

Cube
100% 0.0016 0.0041 0.0005

NP:49154

Sphere
100% 0.0046 0.0156 0.0049

NP:40962

Bunny
100% 0.0023 0.0054 0.0021

NP:40245

Table 2: Comparison of denoising performance of our
method with RIMLS [14] and `0-method [18]. AEL - avg.
edge length of original mesh, NP - number of points.

Figure 7: Visual comparison of denoised outputs of RIMLS
[14], `0 method [18] and our method on a noisy cube (49154
points), a noisy sphere (40962 points) and a noisy bunny
(40245 points) added with Gaussian noise of std. dev. of
avg. edge length of original mesh. The rows correspond to
the cube, the sphere and the bunny data respectively. The
columns correspond to the clean point cloud, noisy point
cloud, outputs of RIMLS, `0-method and our method re-
spectively.

We also perform a synthetic experiment to evaluate the
effectiveness of our outlier detection and removal method

Figure 8: Visual comparison of rendered original point
cloud and denoised outputs of RIMLS [14], `0-method [18]
and our method on the noisy bunny (40245 points) as in
Figure 7. Note the piecewise flat surface encouraged by the
`0-method.

Figure 9: Visual comparison of denoised outputs of our de-
noising method using different outlier removal methods on
an outlier-contaminated noisy cube (49154 points). The first
row shows the original clean point cloud, noisy cube point
cloud with outliers and denoised output from our denoising
method without any outlier removal respectively. The sec-
ond row shows the final denoised outputs from our denois-
ing method using SOR [15, 16], ROR [15] and our outlier
removal method respectively.

Mean cloud-to-mesh `2 distance

WOR SOR ROR Ours

0.0548 0.0017 0.0017 0.0014

Table 3: Performance comparison of our denoising method
using SOR [15, 16], ROR [15] and our outlier detection and
removal method on a noisy point cloud of a cube. WOR -
without outlier removal. See text for details.

(described in Section 3.1) in our denoising method. Specif-
ically we use the cube data and corrupt 40% of the points as
outliers drawn from a Gaussian distribution of a large stan-
dard deviation of 30% of the point cloud dimensions and
add Gaussian noise of standard deviation 200% of the aver-
age edge length of the original mesh in the inliers. We com-
pare the effects of our outlier removal method with SOR
[15, 16] and ROR [15] on the performance of our denoising
method. Parameters of all the methods are tuned to their op-

Figure 10: Comparative results on a point cloud (919851 points) of a heritage monument in the Vitthala temple complex at
Hampi, India, obtained from multi-view stereo. The first row shows the noisy point cloud, the results from RIMLS [14] and
our method respectively. The second row shows the zoomed-in views of the highlighted regions from the noisy point cloud
and the two methods respectively. Clear edges near the green arrow mark is visible in the output from our method.

timal settings. Figure 9 shows visual comparison of the de-
noised outputs. The first row shows the original clean point
cloud, noisy cube point cloud with outliers and denoised
output from our denoising method without any outlier re-
moval. The second row shows the final denoised outputs
from our denoising method using each of the above three
outlier removal methods. Table 3 shows the mean cloud-
to-mesh `2 distances for each case. The denoising perfor-
mance is best with our outlier removal method.

4.2. Real data

We run our method on real 3D point cloud data ob-
tained from multi-view stereo and depth scanner and com-
pare the results with RIMLS [14]. Figure 10 shows the
results of our method on a point cloud (919851 points)
of a heritage monument in the Vitthala temple complex at
Hampi, India, obtained from multi-view stereo, as com-
pared to RIMLS. The first row shows the noisy point cloud,
the results from RIMLS and our method respectively. The
second row shows the zoomed-in views of the highlighted
regions from the noisy point cloud and the two methods
respectively. As observed in the zoomed-in views, unlike
RIMLS, our method recovers a clear edge near the green
arrow mark. Similarly, Figure 11 shows comparative re-
sults on a point cloud (1030980 points) of another heritage
monument in the Vitthala temple complex at Hampi, India,
obtained from multi-view stereo where also our method re-
covers a well defined edge between the two walls marked
by a green arrow. Figure 12 shows comparative results on

a point cloud (153288 points) of a stool obtained using a
depth scanner. The zoomed-in view of the highlighted re-
gion of our method clearly shows the edge of the leg near
the green arrow mark.

Discussion
In our outlier detection and removal step, there are two

parameters ηn and ηd that need to be set. ηn depends on the
amount of outliers present in the data and can be typically
set to a value in the range 0-1. ηd depends on the sampling
density of the true signal in the data. It should be noted that
our method will not detect clustered outliers. In the point
cloud denoising step, typical values of the parameters re-
semble those of RIMLS. The stabilising parameter λ can
be set to a value in the range (0.0-1.0]. One limitation of
our denoising method is that in pathological cases when the
input point cloud is contaminated with noise but not suffi-
ciently sampled, our method induces volume expansion.

5. Conclusion
We have presented a robust 3D point cloud denoising

method consisting of a robust outlier detection and removal
followed by bilateral mollification of the noisy point nor-
mals and finally a repositioning of the 3D points in a manner
so as to preserve the fine scale features. We have shown that
our method automatically recovers well-defined edges and
corners. We have demonstrated the efficacy of our method
through multiple examples and experiments.

Figure 11: Comparative results on a point cloud (1030980 points) of another heritage monument in the Vitthala temple
complex at Hampi, India, obtained from multi-view stereo. The first row shows the noisy point cloud, the results from
RIMLS [14] and our method respectively. The second row shows the zoomed-in views of highlighted regions from the noisy
point cloud and the two methods respectively. Clear edge near the green arrow mark is visible in the output from our method.

Figure 12: Comparative results on a point cloud (153288 points) of a stool obtained using a depth scanner. The first row
shows the noisy point cloud, the results from RIMLS [14] and our method respectively. The second row shows the zoomed-in
views of the highlighted regions of the noisy point cloud, the results from RIMLS [14] and our method respectively. Clear
edge near the green arrow mark is visible in the output from our method.

Acknowledgement

This work is supported in part by an extramural research
grant by the Science and Engineering Research Board, DST,

Government of India. Mohammadul Haque is supported by
a TCS Research Scholarship.

References
[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and

C. T. Silva. Point set surfaces. Visualization and Computer
Graphics, IEEE Transactions on, 9(1):3–15, 2001.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal
component analysis? Journal of the ACM (JACM), 58(3):11,
2011.

[3] J.-E. Deschaud and F. Goulette. Point cloud non local de-
noising using local surface descriptor similarity. In PCV
(Photogrammetric Computer Vision), Paris, France, Sept.
2010.

[4] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[5] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust
moving least-squares fitting with sharp features. In ACM
transactions on graphics (TOG), volume 24, pages 544–552.
ACM, 2005.

[6] Y. Furukawa and J. Ponce. Accurate, dense, and robust
multi-view stereopsis. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 32(8):1362–1376, 2010.

[7] G. Guennebaud and M. Gross. Algebraic point set sur-
faces. In ACM Transactions on Graphics (TOG), volume 26,
page 23. ACM, 2007.

[8] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher,
and H. Zhang. Edge-aware point set resampling. ACM
Transactions on Graphics, 32:9:1–9:12, 2013.

[9] D. Levin. The approximation power of moving least-squares.
Mathematics of Computation of the American Mathematical
Society, 67(224):1517–1531, 1998.

[10] C. Liu, D. Yuan, and H. Zhao. 3d point cloud denois-
ing and normal estimation for 3d surface reconstruction.
In 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 820–825, Dec 2015.

[11] N. J. Mitra and A. Nguyen. Estimating surface normals in
noisy point cloud data. In Proceedings of the nineteenth
annual symposium on Computational geometry, pages 322–
328. ACM, 2003.

[12] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges,
and A. Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. In Mixed and augmented reality
(ISMAR), 2011 10th IEEE international symposium on.
IEEE, October 2011.

[13] A. Nurunnabi, G. West, and D. Belton. Outlier detection and
robust normal-curvature estimation in mobile laser scanning
3D point cloud data. Pattern Recognition, 48(4):1404–1419,
2015.

[14] A. C. Öztireli, G. Guennebaud, and M. Gross. Feature pre-
serving point set surfaces based on non-linear kernel regres-
sion. In Computer Graphics Forum, volume 28, pages 493–
501. Wiley Online Library, 2009.

[15] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011.

[16] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and
M. Beetz. Towards 3D point cloud based object maps
for household environments. Robotics and Autonomous
Systems, 56(11):927–941, 2008.

[17] C. Shen, J. F. O’Brien, and J. R. Shewchuk. Interpolating
and approximating implicit surfaces from polygon soup. In
ACM Siggraph 2005 Courses, page 204. ACM, 2005.

[18] Y. Sun, S. Schaefer, and W. Wang. Denoising point sets via
l0 minimization. Computer Aided Geometric Design, 35:2–
15, 2015.

[19] S. Xiong, J. Zhang, J. Zheng, J. Cai, and L. Liu. Ro-
bust surface reconstruction via dictionary learning. ACM
Transactions on Graphics (TOG), 33(6):201, 2014.

[20] F. Zaman, Y. P. Wong, and B. Y. Ng. Density-based denois-
ing of point cloud. arXiv preprint arXiv:1602.05312, 2016.

[21] Q. Zheng, A. Sharf, G. Wan, Y. Li, N. J. Mitra, D. Cohen-
Or, and B. Chen. Non-local scan consolidation for 3d urban
scenes. 2010.

