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Abstract

We propose a novel global 3D mesh denoising method
that is carried out in two steps, i.e. mollification of normals
followed by vertex correction. Both steps involve minimis-
ing sparse, quadratic cost functions that yield efficient non-
iterative solutions. In the mollification step, we use adaptive
weights that allows for appropriate diffusion while preserv-
ing features. While many existing methods only correct for
the vertex position along the normal direction, we argue
that this is inadequate in many scenarios. Instead, we al-
low for vertex correction in all directions while enforcing a
novel face fairness penalty that preserves face shapes in the
denoised mesh. We present a number of tests and examples
that demonstrate the efficacy of our method in denoising
while preserving face fairness. We demonstrate the supe-
riority of our approach over some relevant methods in the
literature.

1. Introduction
In recent years it has become easier to acquire 3D

data using either depth cameras or by solving the dense
multiview stereo problem using RGB images. Since such
depth data contains significant amounts of noise, all 3D
reconstruction or application pipelines need to carry out
an important denoising step. In the case of depth maps,
the 3D representations are dense with a depth value for
every pixel. For such a pixel grid parametrisation, it is
implicitly assumed that the observation noise in a depth
map representation is only along the direction of the ray
emanating from a given depth pixel. In other acquisition
modalities which generate point clouds, we may assume
the noise to be present in all directions about a 3D point
and not only along the ray representing the homogeneous
parametrisation of a pixel. This is the case for methods that
carry out stereo triangulation.

There are a large number of methods for mesh de-
noising proposed in the literature. We may classify most

of these approaches into a) local, or b) global methods.
In local methods the correction for the noisy mesh is
applied locally, resulting in approaches that are iterative in
nature [5, 6, 15, 16, 18, 21]. An important drawback of
these approaches is the difficulty in defining the number
of iterations required for optimal denoising. Often local
methods also result in artefacts like geometric distortion
and surface shrinkage [12, 18]. In global methods, a global
cost function is optimised [2, 9, 10, 12, 13, 14, 21]. This
typically involved solving a sparse system of equations that
are usually linear in nature [12]. The method proposed in
this paper is a global one.

Many mesh denoising algorithms ignore the true dis-
tribution of observation noise in depth representations and
assume the noise to be restricted along the direction of the
surface normal. As a result, they correct for the position
of a mesh vertex (point) by moving it along this normal
direction. The noise component in the tangent plane about
a surface point is completely ignored. This works well
for low noise scenarios and is reasonable from a mesh
fairing perspective [6]. But at higher noise levels, the noise
component in the tangent plane leads to a severe distortion
of the face shapes in the mesh, including face flipping with
the surface normals being forced to point into a surface
rather than out of it.

Apart from carefully accounting for the presence of
noise in different directions, mesh denoising methods
should also avoid typical problems such as volume
shrinkage and smoothing over surface features such as
edges and corners. Although the classical Laplacian
mesh smoothing method [5] does account for noise in all
directions, methods based on such Laplacian smoothing
do not preserve surface features and are also affected by
the problem of volume shrinkage [15, 18]. More recent
works that present methods designed to preserve features
include [1, 4, 8, 10, 11, 15, 16, 19, 20, 21]. The methods
by He et al. [8] and Cheng et al. [1] are good for piecewise
flat surfaces. However, they result in artificial edges in
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Figure 2. Conventions used in the paper: The left image shows a
portion of a mesh where vi is a vertex with a normal nV

i . The
green shaded area around vi is the face neighbourhood of vi used
in the paper. The right image represents the same portion of a
mesh where fj is a face with vertices vj1 ,vj2 ,vj3 . This face has a
normal nF

j defined at its centroid. The blue shaded area consisting
of all the faces around fj is the face neighbourhood used in the
paper.

smooth regions and hence work poorly on natural data.
Moreover the method of He et al. [8] solves a sequence of
minimisations which is expensive. Most importantly, all
these methods consider denoising only along the normals
and hence end up retaining a significant amount of noise in
the tangential directions in their solutions.

In addition to reducing noise, an important attribute of
any denoising method is its ability to preserve the quality
of the mesh triangles, i.e. mesh fairness. As pointed
out in [15], in most of the literature, 3D mesh denoising,
smoothing and fairing are used interchangeably which is
incorrect.

In this paper, apart from being robust to depth discon-
tinuities, we seek to account for the presence of noise in
all directions by using a scheme which explicitly induces
fairing of face shapes in the denoised output mesh. Ad-
ditionally, while a large number of denoising methods
are iterative in nature, our approach solves a global cost
function that is quadratic in nature, resulting in a method
that is in principle non-iterative.

In Section 2, we briefly describe the notation and
definitions used in this paper. A brief discussion of a
class of approaches to vertex correction sets the stage
for our method. Section 3 describes our approach for
mesh denoising that is based on minimising a global cost
function that is quadratic and sparse in nature and explicitly
incorporates a measure of face fairness. While the two
steps of mollification and vertex correction are described in
Sections 3.1 and 3.2 respectively, in Section 3.3 we present
the salient properties of our approach and also compare
them with other relevant methods in the literature. Section
4 presents extensive results of our method on a variety of
datasets and also compares our performance with that of
other related techniques in the literature.

2. Preliminaries
Consider a clean oriented surface S0 and let

M0 = (V0,E0,F0) be a oriented mesh sampled from S0.
Here V0 = {v0i}NV

i=1 is the noise-free set of 3D points in
S0, E0 = {ei|ei = (vp,vq) ∈ V0 ×V0}NE

i=1 is the set of
edges and F0 = { fi|fi = (vp,vq,vr) ∈ V0 ×V0 ×V0

and (vp,vq) , (vq,vr) , (vr,vp) ∈ E0 }NF

i=1 is the set of
triplets defining the faces of the mesh.

The observation model for any vertex vi is vi = vi0 +si
where vi0 ∈ V0 is the true noise-free vertex and si is i.i.d.
Gaussian noise. Hence, the noisy mesh can be represented
as M = (V,E0,F0) where V = {vi}NV

i=1 is the noisy
set of vertex position measurements. For any face fj , the
normal vector at its centroid is denoted as nF

j and for any
vertex vi, the normal vector is denoted as nV

i . This dis-
tinction between two types of normals is also schematically
illustrated in Fig. 2. The boundary of a mesh M is denoted
∂M =

(
VB ,EB

)
where VB ⊂ V, EB = {(vp,vq)} ⊂ E

and vp,vq ∈ VB . Since we consider only triangle meshes,
we will use the terms triangle and face interchangeably.
By N (x), we denote some neighbourhood operator on the
entity x which is either a vertex or a face, depending on the
context.

Before describing our approach, it is instructive to con-
sider a commonly used vertex modification step:

v̂i = vi +
∑
j

wijAijvj (1)

where v̂i is the estimated vertex, Aij is a linear operator
defined locally around vi and wij are the weights on the
corresponding neighbouring vertices vj ∈ N (vi). Such a
vertex modification is often iteratively applied [6, 3, 17].
The weights wij and the local operator Aij vary depending
on the algorithm. In Laplacian smoothing [5], Aij = I, i.e.
the identity operator which is isotropic in nature, weights
wij can be either constant or depend on the corresponding
face areas or cotangents. Such Laplacian smoothing does
not preserve features and also results in high volume
shrinkage. These problems are mitigated to an extent by
bilateral mesh filtering [6] where wij is set to the bilateral
weights and Aij is the orthogonal projection onto the
normal direction which is anisotropic in nature.

The operator Aij depends on the predicted local ge-
ometry which is more sensitive to noise than the vertex
positions themselves [11]. Consequently, a mesh de-
noising algorithm always requires a mollification step for
smoothing normals before actually performing the vertex
correction step. Mollification is often implemented in
two different ways [15], i.e. a) methods that iteratively



Figure 1. Denoised mesh quality of different methods on a cube (Nv = 1538, NF = 3072) corrupted with isotropic Gaussian noise with
standard deviation σ = 0.15×mean edge length. The first row shows the surface quality and the second row depicts the mesh quality. The
columns correspond to the ground truth mesh, noisy mesh, bilateral filtered [6], filtered output of Jones et al. [11], output of Sun et al. [15]
and finally output of our method respectively.

improve the normals and vertex positions in an interleaved
fashion, or b) methods that first mollify the normals and
then correct the vertex positions. In the latter case, we
observe that when the noise is moderately high, due to
the large discrepancy between the mollified normals with
respect to the noisy input vertices, the output mesh ends
up with faces that are folded. This is due to the fact that
denoising methods such as [15] move the noisy vertices vi

only along the normal directions, resulting in an inversion
of the face normals and irregular face shapes.

3. Our Denoising Method

In most of the normal mollification methods, either the
amount of normal smoothing is inadequate or it is non-
robust leading to the loss of surface features [11]. In the
case of iterative methods, selecting the number of iterations
is not intuitive, e.g. [15] where two different numbers of
iterations are used. In our method, while we use the two
steps of mollification and vertex correction, each step is
posed as the minimisation of a global cost function. Being
quadratic and sparse, our cost functions have closed-form
(non-iterative) solutions which can be efficiently computed.
By explicitly incorporating a face fairness penalty term,
our vertex correction method removes noise both along the
normal as well as in the tangent plane about a vertex. Such
an approach, when coupled with a careful design of the
data-adaptive weights of our cost function leads to a high
quality denoising method which also ensures face fairness.

3.1. Mollification

The first step of our denoising approach is a molli-
fication of the normals. As explained in the previous

section, the local operators Aij and weights wij depend
on local surface properties and need to be estimated from
the noisy mesh M. Hence, while the neighbourhoodness
or the topology of M is assumed to be unaltered, in our
method we only require to mollify the set of face normals{
nF
i

}NF

i=1
. However unlike previous methods like [11, 15]

we minimise a global cost function defined on the set of
face normals, to obtain

{
n̂F
i

}NF

i=1
which is a smoothened

version of the noisy face normals.

For each face normal nF
i , our cost function con-

tains two terms, i.e. i) a data term dNo
(
n̂F
i ,n

F
i

)
which

applies a quadratic penalty to the difference between
the observed and estimated normals and ii) a weighted
quadratic smoothness term over a local neighbourhood∑
j∈NF (i)

w2
ijd

N
s

(
n̂F
j , n̂

F
i

)
which induces local anisotropic

smoothness. By adding up all the terms for each face nor-
mal, i.e. summing over index i, our solution for global mol-
lification becomes one of minimising

NF∑
i=1

dNo
(
n̂F
i ,n

F
i

)
+ λN

NF∑
i=1

∑
j∈NF (i)

w2
ijd

N
s

(
n̂F
j , n̂

F
i

)
subject to ||n̂F

i ||
2

= 1, i = 1, 2, · · · , NF

(2)

where λN is a regularising parameter depending on the
noise variance and the face neighbourhood operator NF (i)
is defined as the set of faces which share a common vertex
with the face fi which is depicted in Fig. 2. As we wish to
be robust in preserving edges, our weighting function is the



same as that of [15], i.e.

wij

(
n̂F
j , n̂

F
i

)
=

{(
n̂F,T
j n̂F

i − t
)

if n̂F,T
j n̂F

i > t

0 otherwise
(3)

where t is a threshold parameter.

While ideally we should use the geodesic distance of
the normals on the unit sphere S2 in dNo and dNs in Eqn. 2,
for the sake of efficiency we use the quadratic error metric
which does not affect the quality of the mollified normals
in any significant manner. The cost function in Eqn. 2 is
minimised using gradient descent. In the case where the
noise level is moderate or high, we recompute weights wij

at every iteration of our gradient descent approach.

3.2. Vertex Correction

Once we obtain an estimate of the face normals{
n̂F
i

}NF

i=1
, we can apply our vertex correction step that

is described in this subsection. Most of the previous
denoising methods update the vertex positions only in
the normal direction. As we demonstrate in Sec. 4.1,
for many existing methods this leads to irregular and
folded faces in the denoised mesh which in turn results in
shadow artefacts when we use smooth shading rendering in
graphics pipelines.

Notationally, the set of NV vertices {v̂i}NV

i=1 can be col-
lected into a single concatenated vector denoted as V. In the
following, V denotes the set of observed vertices and the es-
timated set of vertices after vertex correction as V̂. To ame-
liorate the problems discussed above, in our vertex correc-
tion step, we minimise a global cost function CV (V̂) which
has three terms, i.e., a data term dVo (V̂,V), a smoothness
term dVs (V̂) and a face fairness term dVf (V̂,V). The re-
sulting cost function to be minimised is

CV (V̂) = dVo (V̂,V) + λV d
V
s (V̂) + ηdVf (V̂,V) (4)

where λV are η are parameters depending only on the
type and amount of noise. Here, the data term is a sim-

ple quadratic penalty dVo

(
V̂,V

)
=
∥∥∥V̂ −V

∥∥∥2
2

and the

smoothness term dVs (·) is a global function of a weighted
Laplacian on the estimated mesh defined as ‖LV‖22. Our
weighting in the global Laplacian operator is both novel
and important as it leads to significantly improved denois-
ing performance. In addition to such weighting, we also in-
troduce a novel face fairness term dVf (·) that automatically
results in fairness of the triangle shapes. Such an approach
to fairness significantly reduces the possibility of folding
artifacts in the denoised mesh which occurs in many other
methods.

3.2.1 Construction of our global Laplacian

Our Laplacian operator is anisotropic in nature [18] which
is defined only along the normal directions at the vertices.
However the novelty of our approach lies in the careful se-
lection of the weights. Specifically we use the following
operator Li (·) to define the Laplacian form for each vertex
vi i.e.

Li (vi) =
∑

j∈NV (i)

 ajbj

(1 + bj)
∑

j∈NV (i)

aj

(nF
j n

F,T
j

)
(
vi −

(vj1 + vj2 + vj3)

3

)
(5)

where aj and bj form the bilateral weighting functions
and nF

j is the normal of the neighbouring face fj corre-
sponding to the vertex vi i.e. NV (i) is the set of 1-ring
neighbouring faces to the vertex vi and vj1 , vj2 , vj3 are
vertices of fj . We denote ∆vij as the difference between
the vertex vi and the centroid of face fj , i.e. ∆vij =
vj1

+vj2
+vj3

3 − vi. Consequently, for our approach we de-
fine

aj = exp

(
−
(
nT
j ∆vij

)2
2σ2

1

)
(6)

which is the weighting along the normal direction of the
considered neighbouring face corresponding to the vertex
vj . Similarly, we have

bj = exp

(
−
‖∆vij‖22

2σ2
2

)
. (7)

Finally, each Laplacian Li (vi) is a function pertaining
to a single vertex and all such terms are concatenated to
form our global weighted Laplacian L (V) used in Eqn. 4.
We note here that unlike many previous methods where the
bilateral scheme is used, we have decoupled the two weights
aj and bj and we have also used the face normals instead of
vertex normals. We use the face normals since the vertex
normals are undefined at edges and corners. As a result, our
method provides better feature preservation at the edges and
corners.

3.2.2 Face fairness penalty

As discussed in previous sections, while most denoising
method apply vertex correction only along the surface nor-
mal, the actual noise present in a mesh also has a component
that lies in the tangent plane about a vertex. Neglecting this



Figure 3. Face quality of denoised mesh of a cube (NV =
1538, NF = 3072) corrupted with isotropic Gaussian noise with
standard deviation σ = 0.15×mean edge length. Left image: Sun
et al. [15]. Middle image: Our method without fairness penalty.
Right image: Our method with fairness penalty. Our method that
incorporates the fairness penalty is able to ensure face fairness
whereas the other two methods fail to do so.

Error metric Sun [15]
Ours
(w/o fairness
term dVf )

Ours
(with fairness
term dVf )

Mean NE (◦) 0.6427 0.5704 0.4633
Mean VPE 0.0259 0.0258 0.0129

Table 1. Comparison of errors in the denoised output for different
methods on the cube example given in Fig. 3 NE denotes ‘Normal
angle error’ and VPE denotes ‘Vertex position Euclidean distance
error’.

fact under high noise levels leads to an undesirable folding
of faces. To mitigate this problem, in our approach we in-
troduce a face fairness term dVf that ensures that triangular
faces do not become skinny or folded. The face fairness
penalty for a single denoised vertex v̂i, is

dVf (v̂i) =
∥∥∥ri(I− nV

i n
V,T
i )(v̂i − vc,i)

∥∥∥2
2

(8)

where vc,i is the centroid of the 1-ring face neighbourhood
NV (i) around the vertex vi and the weight ri is given as

ri =


0 if vi ∈ VB

0 else if β < 0

β otherwise
(9)

where β = min
p,q∈NV (i)

(nF,T
p nF

q − δ) and δ is a small

positive value (δ = 0.2 throughout this paper). Note the
first condition in the weight defined in Eqn. 9 ignores the
boundary in open meshes whereas the second condition
carefully ignores the edges and corners. Also, the fairness
penalty constrains the solution only in the tangential plane
about a vertex without affecting the smoothness penalty
term. Since, this term is explicitly defined with respect to
the solution, our fairness penalty avoids tangential shift.
Hence, the denoised mesh becomes free of irregular faces.

We note here that since our cost function is quadratic, we

have a closed form solution for the vertex correction step
given as

V̂ =
(
I + λV L

TL + ηKTK
)−1 (

V + ηKTKVc

)
(10)

where K is formed from Eqn. 8 and Vc is the concate-
nated vector formed from vc,i, i = 1, 2, · · · , NV . Since
the cost function of Eqn. 4 is sparse in nature, in practice
we can solve for the denoised mesh using efficient sparse
solvers.

Our Algorithm: We summarise our approach to 3D
mesh denoising as normal mollification followed by vertex
correction which involve the minimisation of Eqn. 2 and
Eqn. 4 respectively.

3.3. Salient Properties of Our Method

We can now present some of the salient features of
our denoising algorithm and also compare its properties
with that of other methods in the literature. Firstly, the
significance of our fairness penalty is illustrated in Fig. 3
where we compare the denoised mesh faces of the method
of Sun et al. [15] with our method where we solve Eqn. 4
both with and without the fairness penalty term dVf . We
can observe that the solutions of Sun et al. [15] as well
as our global method without the fairness penalty do not
preserve the regular nature of the mesh faces. However, as
is clearly evident, incorporating our fairness penalty term
rectifies this problem and results in an accurate recovery
of the mesh while also preserving the fairness of faces.
In Table 1 we quantify the relative performance of the
different methods in terms of the corresponding mean
absolute errors of denoised normals in degrees and mean
Euclidean error distances of the denoised vertices with
respect to the ground truth. As can be seen, not only does
the face fairness penalty improve the shapes of the denoised
faces, it also improves the estimation of the vertex positions
and the face normals.

The second salient feature of our approach is its
ability to preserve surface feature without causing
any volume shrinkage. In our experiment we used a
spherical mesh (NV = 962, NF = 1920) corrupted
with isotropic Gaussian noise with standard deviation
σ = 0.2 × mean edge length. To compare different meth-
ods, we computed the normalised ratio of the volume of the
denoised mesh and the original one. While the optimal ratio
should be 1, the normalised volume ratios of the bilateral
filtered method [6], Jones et al. [11], Sun et al. [15] and
our own method were 0.7770, 0.9425, 1.0001 and 1.0011
respectively. From these ratios, it will be noted that the
outputs of our method and Sun et al. [15] have insignificant
volume shrinkage while the outputs of bilateral filtering [6]



Method Feature Volume Face Optimal
Preservation Preservation Fairness Convergence

Laplacian [5] Poor Poor Good No
Taubin [17] Poor Good Good No
Bilateral [6] Moderate Moderate Poor No

Jones et al. [11] Good Moderate No NA
Sun et al. [15] Good Good Poor No

Zheng et al. [21] Good Moderate Poor No
Ours Good Good Good Yes

Table 2. A qualitative comparison of different mesh denoising al-
gorithms. ‘NA’ denotes ‘Not Applicable’. See text for details.

and Jones et al. [11] have a considerable shrinkage artefact.
Hence, our method is able to both preserve volume as well
as denoise in the tangential directions.

Finally, in Table 2 we provide a comparative assessment
of some relevant denoising methods in the literature and our
approach with regard to a variety of desirable properties.
As will be noted, since the Laplacian method [5] and that
of [17] are isotropic methods, triangle fairness is implicitly
incorporated, but they perform poorly in preserving surface
features. On the other hand, although Jones et al. [11], Sun
et al. [15] and the BNF method of [21] have good feature
preservation, they lack the fairness of the triangle shapes in
their outputs. In contrast, apart from its ability to preserve
desirable 3D surface features, our method guarantees both
triangle shape fairing as well as optimal convergence unlike
other methods. Thus our method has all the necessary
attributes of a good mesh denoising scheme.

4. Results
We first compare the denoising performance of our al-

gorithm with some of the relevant methods in the literature.
Specifically, we compared our results with the bilateral
filter [6], the method described in [11]1 and the method
in [15]. In our implementation, we fixed the threshold t
in Eqn. 3 to t = 0.5 for denoising objects with piecewise
flat surfaces and t = −0.25 for denoising Kinect scans.
It should be noted that the value of t = −0.25 is chosen
as it is suitable for Kinect scans that have high amounts
of quantisation noise leading to a staircase effect. All the
parameter settings for different methods are chosen to
provide the best performance for the respective methods.

4.1. Quantitative Evaluation of Performance

We first demonstrate the efficacy of our method on
meshes corrupted with additive Gaussian noise of different
levels to the vertex positions as compared to some of the

1We used the implementation of Trimesh 2 available at
http://gfx.cs.princeton.edu/proj/trimesh2/.

other relevant methods. For our evaluation, we use both the
mean and median absolute deviation of the face normals
measured in degrees and the mean and median Euclidean
error metric on the vertex positions. We manually tune
the parameters of each of the methods we used for best
performance with respect to the mean face normal devia-
tions. The comparisons are tabulated in Table 32. As can
be seen from Table 3, in all the cases, our method has the
lowest vertex position errors. This success of our method
is mainly due to the addition of the fairness penalty for the
face shapes which actually denoises the vertex positions on
the surface along the tangential directions. Additionally,
we can easily see that in most of the cases, the normal
estimation is superior whereas our approach provides the
lowest vertex position error for all datasets. In Fig. 4 the
first row shows the surface quality of the results obtained
from different methods applied on the Bunny scan from
the Stanford repository (NV = 15861, NF = 31001)
corrupted with isotropic Gaussian noise with standard devi-
ation σ = 0.2 × mean edge length. The second row shows
the same results rendered in the smooth shading mode
in OpenGL. This rendering mode reveals the presence of
folded faces as regions of black spots. As can be seen, our
result does not contain such artefacts, while the results of
Jones et al. [11] and Sun et al. [15] have numerous such
black regions. However, although, bilateral filtering does
not have such artefacts, its output has a high error with
respect to the ground truth as listed in Table 3. In summary,
it is clear that adding our face fairness penalty not only
results in a fair denoised mesh, but also leads to better
recovery of the vertex positions.

4.2. Evaluation on Real Datasets

We now present some visual comparisons on
real datasets. Fig. 5 shows the comparison of de-
noising results on a raw Microsoft Kinect scan
(NV = 46815, NF = 91392) of a person. The first
column shows the snapshots of the full denoised mesh.
The second column shows the zoomed-in view near the
nose of the person. It will be noted here that the denoised
surface of the nose in our case is far better recovered
than those of the bilateral method [6] and that of Sun et
al. [15]. While a folded triangle is observed in the case
of the bilateral filtered nose, the jaggedness of the side of
the nose is prominent in the case of Sun et. al. Both of
these observations are explained by our use of an additional
triangle shape fairness penalty term. Since the side of the
nose has normals almost orthogonal to the viewpoint, these
two methods fail to denoise the actual noise component

2We could not evaluate the errors on the vertex positions for BNF [21]
since the code available at http://www.youyizheng.net/ performs an artifi-
cial scaling.



Figure 4. Denoised mesh quality of different methods on the bunny face (NV = 15861, NF = 31001) corrupted with isotropic Gaussian
noise with standard deviation σ = 0.2 × mean edge length. The columns correspond to the ground truth, noisy mesh and solutions for
bilateral filtered [6], Jones et al. [11], Sun et al. [15], BNF [21] and our method respectively. The first row shows the surface quality. The
second row shows the same surface in a smooth shading rendering mode. In this mode, the folded face artefacts appear as black spots for
many of the methods but not for our approach.

Object Error metric Noisy Bilateral [6] Jones [11] Sun [15] BNF [21] Ours

Cube
(NV = 1538, NF = 3072)
σ = 0.15× mean edge length

Mean NE (◦) 17.8359 15.8377 8.0962 0.6427 1.0038 0.4633
Median NE (◦) 15.7464 9.9139 3.9450 0.4571 0.6924 0.2496

Mean VPE 0.0339 0.0595 0.0359 0.0259 NA 0.0129
Median VPE 0.0323 0.0467 0.0309 0.0236 NA 0.0113

Sphere
(NV = 962, NF = 1920)
σ = 0.20× mean edge length

Mean NE (◦) 25.4718 9.5720 6.7752 5.6170 4.5514 3.0540
Median NE (◦) 20.4477 4.0244 2.9805 2.1998 0.9505 1.8509

Mean VPE 0.0404 0.0785 0.0383 0.0323 NA 0.0169
Median VPE 0.0377 0.0802 0.0353 0.0290 NA 0.0148

Fandisk
(NV = 6475, NF = 12946)
σ = 0.15× mean edge length

Mean NE (◦) 17.4080 14.9835 16.9082 2.8616 2.1682 4.7996
Median NE (◦) 15.4042 8.8645 13.7399 1.1175 1.6097 1.5808

Mean VPE 0.0098 0.0162 0.0382 0.0090 NA 0.0086
Median VPE 0.0094 0.0130 0.0364 0.0080 NA 0.0062

Bunny face
(NV = 15861, NF = 31001)
σ = 0.20× mean edge length

MeanNE (◦) 29.8166 13.6589 14.0275 13.6516 13.3182 8.0335
Median NE (◦) 23.0867 6.0132 6.6298 6.4421 6.1740 5.8553

Mean VPE 0.0340 0.0300 0.0304 0.0287 NA 0.0252
Median VPE 0.0319 0.0277 0.0273 0.0263 NA 0.0226

Armadillo
(NV = 67598, NF = 134576)
σ = 0.20× mean edge length

Mean NE (◦) 24.4805 9.0491 8.0203 8.2836 8.2653 9.0906
Median NE (◦) 20.9570 6.3233 5.7928 5.8005 5.8508 7.4757

MeanVPE 0.1669 0.1541 0.1435 0.1408 NA 0.1235
MedianVPE 0.1598 0.1459 0.1344 0.1321 NA 0.1147

Table 3. Comparison of denoising performance of our approach with other methods in the literature. We compare both normal angle error
(NE) and Vertex position Euclidean distance (VPE) error. ‘NA’ denotes ‘Not Available’. The best performance for each dataset is indicated
in bold. See text for details.

along the direction of the viewpoint which is tangential
to the surface normal. However our method is able to
handle this tangential noise. Moreover, the quality of the
face is recovered very well as shown in the third column.
Fig. 6 shows the denoising results on a raw Kinect scan
of a chair (NV = 31159, NF = 59979). The bilateral
filter and the method of Sun et al. [15] failed to denoise
the chair. The reason for failure is the staircase artefact
caused by the quantisation noise present in the Kinect scan.

This makes most of the face normals almost tangential to
the actual direction of noise which hinders the diffusion
in these two methods. However since our method is a
global one and has an implicit fairing in the tangential
planes, it is not affected and successfully recovers the
surface. Finally, Fig. 7 shows the denoising results on a
mesh (NV = 185546, NF = 360814) of a sculptured pillar
from the Vitthala temple at Hampi complex, a heritage
cultural site. This mesh was generated using a standard



Figure 5. Denoising quality of different methods on a mesh (NV =
46815, NF = 91392) generated from a raw Kinect depth map of
a person. The rows correspond to the raw noisy mesh, bilateral
filtered [6], Sun et al. [15] and our method respectively. While
the first column shows the surface quality, the second and third
columns show the zoomed-in views on the nose of the person.
These representations of the nose clearly show the improved face
fairness quality of our method.

multiview stereo package on a set of RGB images of the
pillar [7]. The second row shows the zoomed-in views
(in smooth shading rendering mode) of the region marked
as a black square. Since the noise level of the multiview
stereo result is low, the smoothness of the outputs of the
different methods are comparable. However, amongst the
methods compared, ours has the lowest number of folded
mesh faces which is due to our explicit incorporation of a
fairness penalty term.

5. Conclusion

We have presented a two-step denoising method that
globally solves for both normal mollification and vertex
correction. Our vertex correction step accounts for noise in
all directions and also incorporates a novel cost function
for enforcing face fairness in the mesh. The ability of our
method to provide good mesh denoising while preserving
face fairness is demonstrated on a number of datasets. The
superiority of our approach over other relevant methods in
the literature is also established.
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Figure 6. Denoising quality of different methods on a mesh (NV =
31159, NF = 59979) generated from a raw Kinect depth map of
a chair. From left to right we show the noisy mesh, and results of
bilateral filtered [6], Sun et al. [15] and our method respectively.
As can be seen, the method of Sun et al. fails to denoise this
dataset.

Figure 7. Denoising quality of different methods on a mesh (NV =
185546, NF = 360814) of a sculptural pillar generated using
multiview stereo applied to a set of images. We show, from left
to right, the noisy mesh, and results of bilateral filtered [6], Sun
et al. [15] and our method respectively. The first row shows the
surface quality. The second row shows the zoomed-in views with
marked regions that show the presence of folded faces visible as
black spots in smooth shading rendering mode. Such artefacts are
not present in our denoised mesh.

mous reviewers for useful feedback and Suvam Patra of
Graphics and Computer Vision Lab, IIT Delhi for provid-
ing us the sculptural pillar dataset.



References
[1] X. Cheng, M. Zeng, and X. Liu. Feature-preserving filter-

ing with l0 gradient minimization. Computers & Graphics,
38:150–157, 2014. 1

[2] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Im-
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