

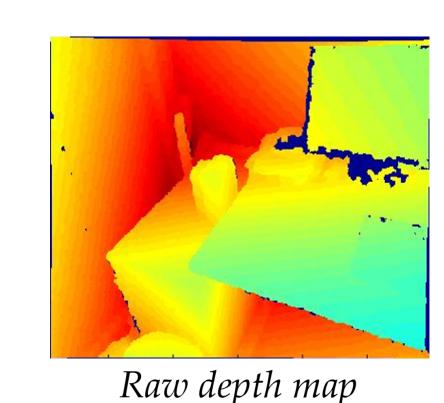
Fast Multiview Registration of 3D Scans using Planar Structures

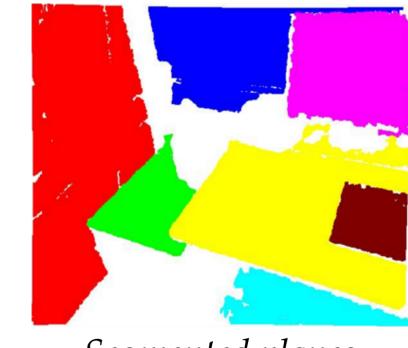
Uttaran Bhattacharya, Sumit Veerawal, Venu Madhav Govindu


ABSTRACT

We present a fast and lightweight method for 3D registration of scenes by exploiting the presence of planar regions.

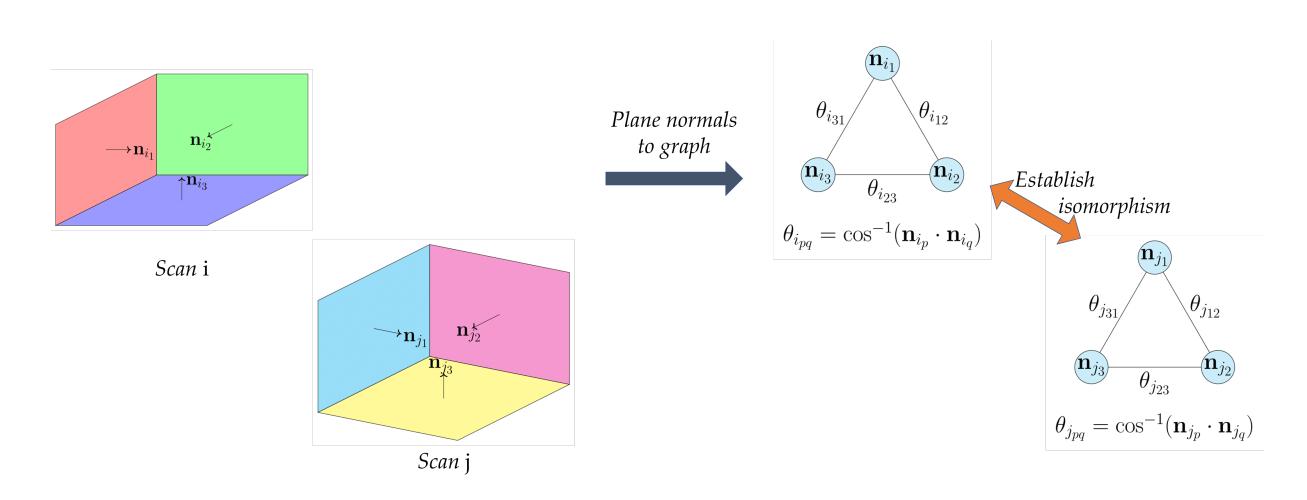
Introduction


- Generation of 3D maps of real world scenes for robotic navigation, area surveillance and other such applications is of growing interest.
- Most of the available 3D registration techniques based on point correspondences between scans do not scale well for faster implementations.
- Our method exploits the presence of planes in common real world indoor environments to produce a fast and lightweight registration pipeline.


OVERALL PIPELINE

PLANE SEGMENTATION

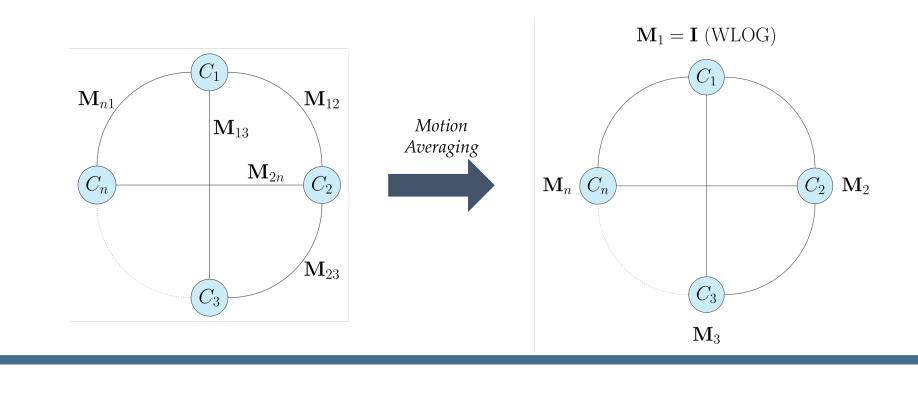
- Exploit affine relationship between image points corresponding to 3D planar regions and their disparity map.
- Pass the disparity maps through LoG filters: zero response in the output up to noise correspond to planar regions.



Segmented planes

Plane Correspondence

- Angles between plane normals in scans are invariant to rigid motions.
- **Graph isomorphism** used to establish correspondence between the plane normals.

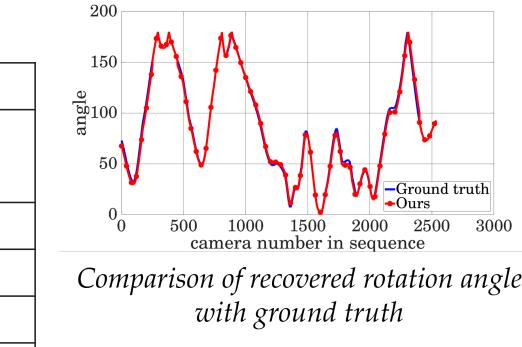


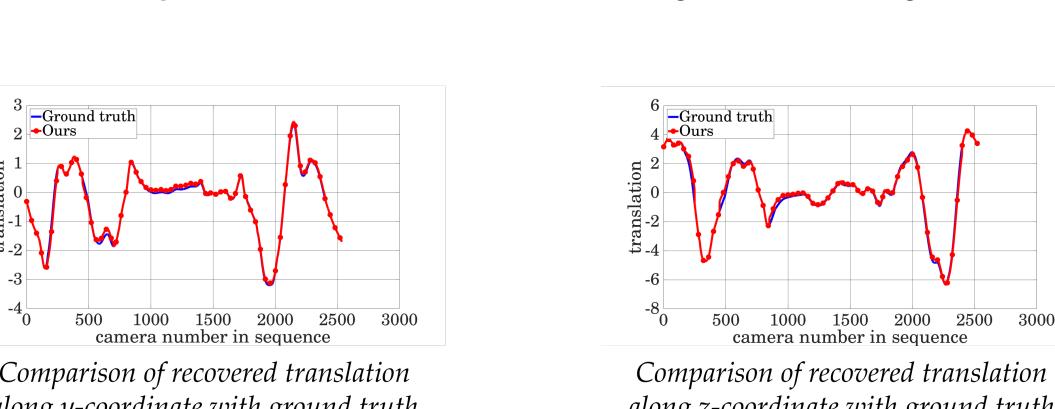
Motion Estimation

	≥ 3 corresponded planes	< 3 corresponded planes		
	Umeyama's method:	Modified Horn's method: $R_{ij} = YQ \pm \frac{Z}{\sqrt{ trace(Z) }};$		
	$\mathbf{R}_{ij} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top};$			
Rotation	$\mathbf{U}\mathbf{D}\mathbf{V}^{\top} = svd(\mathbf{Y}),$	$\mathbf{R}_{ij} = \mathbf{YQ} \pm \frac{\mathbf{Z}}{\sqrt{ trace(\mathbf{Z}) }};$ $\mathbf{Q} = \left(\frac{\mathbf{u}_1 \mathbf{u}_1^{\top}}{\sqrt{\lambda_1}} + \frac{\mathbf{u}_2 \mathbf{u}_2^{\top}}{\sqrt{\lambda_2}}\right),$		
Estimation	$\mathbf{D} = diag(d_i), d_i \ge d_j \ \forall \ i > j,$	$\mathbf{Z} = \begin{bmatrix} (\mathbf{Y}\mathbf{S})(\mathbf{Y}\mathbf{S})^{\top} & -\mathbf{I} \end{bmatrix} \mathbf{u}_3 \mathbf{u}_3^{\top},$		
$[\mathbf{Y} = \mathbf{N}_j \mathbf{N}_i^{\top}] \qquad \mathbf{S} = \begin{cases} \mathbf{I}, & det(\mathbf{Y}) \ge 0 \\ diag(1, 1, -1), & det(\mathbf{Y}) < 0 \end{cases}$		$\{\lambda_j\},\{\mathbf{u}_j\}\leftarrow eig(\mathbf{Y}^{\top}\mathbf{Y})$		
Translation Estimation	Solve for \mathbf{t}_{ij} : $\begin{bmatrix} \mathbf{n}_{i_1}^{\top} \mathbf{R}_{ij} \\ \vdots \\ \mathbf{n}_{i_X}^{\top} \mathbf{R}_{ij} \end{bmatrix} \mathbf{t}_{ij} = \begin{bmatrix} d_{i_1} - d_{j_1} \\ \vdots \\ d_{i_X} - d_{j_X} \end{bmatrix};$ $X = \text{\# correspondences}$	ICP for translation only		

GLOBAL REGISTRATION

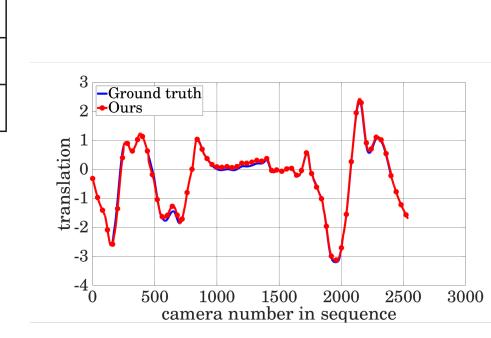
- $C_k, k = 1...n$: Cameras.
- : Relative motion between Cameras i and j.
- \mathbf{M}_k : Absolute motion of Camera k w.r.t. global frame of reference, $\mathbf{M}_{ij} = \mathbf{M}_j \mathbf{M}_i^{-1}$.




RESULTS

Unaligned scan pair

Table: Mean distance from ground truth surface for full reconstruction in METERS. Running time measured on Intel Core i7-5960X 3 GHz processor with 32 GB RAM in SECONDS


Dataset		Mean distance			Running time		
		ICP+MA	Zhou	Our	ICP+MA	Zhou	Our
			et al.	method		et al.	method
Aug. ICL-NUIM	livingroom1_noisy	0.10	0.05	0.05	14,260	7,460	1,380
	livingroom2_noisy	0.07	0.06	0.06	11,680	6,110	970
	office1_noisy	0.08	0.03	0.03	13,370	6,990	1,270
	office2_noisy	0.08	0.05	0.05	12,620	6,600	1,050
Sun3D	harvard_c8/hv_c8_3	0.07	0.05	0.05	4,900	2,620	950
	mit_32_d507/d507_2	0.07	0.04	0.04	26,590	14,240	5,500

Comparison of recovered translation

along x-coordinate with ground truth

along z-coordinate with ground truth along y-coordinate with ground truth

FIGURE: Registration alignment achieved by the different methods on a sample pair of scans from $mit_32_d507/d507_2$

Scan pair aligned using ICP

Scan pair aligned using Zhou et al

Scan pair aligned using our method

Figure: Comparison of full camera trajectory recovered by our method with the ground truth for office2_noisy

Conclusion

- In the presence of planes in scans, our registration method provides accuracy at par with state-of-the-art approaches in the literature while being significantly faster than them.
- Since planar representations adequately summarize the 3D information of many points in a scan, our approach results in significantly smaller memory requirements.

REFERENCES

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast Global Registration. In Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II, pages 766–78, Cham, 2016. Springer International Publishing.