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Abstract

We present a fast and lightweight method for 3D registra-
tion of scenes by exploiting the presence of planar regions.
Since planes can be easily and accurately represented by
parametric models, we can both efficiently and accurately
solve for the motion between pairs of 3D scans. Addition-
ally, our method can also utilize the available non-planar
regions if necessary to resolve motion ambiguities. The re-
sult is a fast and accurate method for 3D scan registration
that can also be easily utilized in a multiview registration
framework based on motion averaging. We present exten-
sive results on datasets containing planar regions to demon-
strate that our method yields results comparable in accu-
racy with the state-of-the-art while only taking a fraction of
computation time compared with conventional approaches
that are based on motion estimates through 3D point corre-
spondences.

1. Introduction

Modern depth scanners are capable of acquiring good
quality scans of 3D environments which can be utilized to
generate 3D maps for the purposes of autonomous robotic
navigation, area monitoring and many other applications.
This growth in 3D scanning capabilities entails a concomi-
tant need for fast processing pipelines capable of generating
accurate 3D scene models by registration of individual
3D scans. However, most of the available 3D registration
techniques based on point correspondences between scans
do not scale well for faster implementations. In the current
paper, we exploit the presence of planes in common real
world indoor environments to build a registration pipeline
that is fast, lightweight and provides sufficient accuracy for
practical applications. Our approach first identifies and seg-
ments planar regions in the input scans using a simple and
efficient clustering scheme that utilizes knowledge of the
sensor noise model. Subsequently we match planar regions
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across scans. This matching of planes is accomplished
by utilizing the fact that plane normals are invariant to
Euclidean motion and at the same time yield discriminative
matching. We use the available 3D planar regions matched
across scans to robustly solve for the motion parameters
between pairs of scans. In certain cases, when we have very
few planes in scans, the planar representations do not yield
a sufficient number of constraints for motion estimation. In
such cases, we augment the motion estimation procedure
by also utilizing a few point correspondences in non-planar
regions of the scans. Finally, we use the individual pairwise
motion estimates in a robust motion averaging framework
to solve for the global multiview registration problem, i.e.
place all scans in a common frame of reference.

2. Related Work
The key components of our 3D registration pipeline are

identification and segmentation of planar regions in 3D
scans, matching of such planes across scans, estimation of
relative motion between matched planar representations
and global multiview registration through motion averag-
ing. While the literature of 3D scan registration is very
large, in this Section, we limit ourselves to a brief review
of literature relevant to the individual steps in our pipeline.

Lee et al. [13] used a RANSAC based approach
and uncertainty analysis to perform plane segmentation.
The plane-based simultaneous localization and mapping
(Planar-SLAM) algorithm of Siegwart et al. [23] also uses
uncertainty analysis with least-square fitting for extracting
planes. Pathak et al. [16] solved for plane segmentation of
scans collected with extremely noisy range sensors using
uncertainty analysis and region growing. Feng et al. [5]
used agglomerative hierarchical clustering to perform plane
segmentation. In comparison with planar segmentation,
the problem of plane correspondence across scans has
received less attention in the 3D registration literature.
Most approaches use heuristics such as color features, area
similarity, normal similarity of planar regions etc. However,



Pathak et al. [15] solved for the unknown correspondences
using a plane-parameter covariance matrix after pruning
the search space on the basis of shape factor, area ratio,
curvature histogram and inter-surface relations.

For motion estimation based on plane parameters,
Siegwart et al. [23] used an extended Kalman filter (EKF)
approach. Taguchi et al. in their point-plane based SLAM
approach [20] solved for motions first using a joint plane-
point model and then applying a global optimization on all
matching 3D feature points and 3D planes. Pathak et al.
[15] used least-squares estimation of rotation to align plane
normals. They also solved for translation using a rough
estimate of plane overlap and a small translation approxi-
mation. More general motion estimation methods typically
use variants of the ICP algorithm [17]. For instance, the
very popular KinectFusion [14] method is based on ICP
and works well when the depth sensor is moved slowly and
smoothly in the scene. KinectFusion registers each scan
with an accumulative map it has built based on previous
scans. However, it does not take loop closures into account
and suffers from drift errors. Kintinuous [24], a modified
version of KinectFusion, allows dynamically updating the
point cloud data being mapped and resorts to fast odometry
from vision on scans where ICP does not converge.

With regard to multiview 3D registration using pairwise
motion estimates, Govindu [8] introduced a motion averag-
ing approach that reduced the effects of accumulated drift
errors in global registration in a geometrically consistent
manner. This approach was made robust by incorporating
a RANSAC step that identified and rejected individual
motion outliers [9]. More recently, Choi et al. [3] devel-
oped an indoor scene reconstruction approach using dense
and reliable point correspondences and running a robust
global optimization with outlier removal. Zhou et al. [27]
modified this method to drastically increase the speed of
the algorithm without significantly compromising accuracy.

3. Problem Formulation
In this Section, we show how we can utilize the rep-

resentations of available 3D planes to solve for the mo-
tion between a pair of 3D scans. Let there be mk planes
in the k-th scan. We represent the set of all planes in
the k-th scan as Sk =

[
s1 s2 . . . smk

]
such that for

a point p =
[
X Y Z

]>
lying on plane l in the k-th

scan, l ∈ {1, . . . ,mk}, we have s>l p + 1 = 0. Note that
we can also equivalently represent the plane parameters by
the matrix Lk =

[
N>k dk

]>
, Nk =

[
n1 n2 · · ·nmk

]
,

dk =
[
d1 d2 · · · dmk

]>
, where nl = sl

‖sl‖2 is the unit nor-
mal to plane l in the scene and dl = 1

‖sl‖2 is the offset of

the same plane l from the origin of the frame of reference.
Thus, for the point p mentioned above, we can now write,

n>l p + dl = 0 (1)

=⇒ M−>
[
nl dl

]>
M

[
p
1

]
= 0 (2)

where M =

[
R t
0>3 1

]
represents the rigid motion of rota-

tion R ∈ SO(3) followed by translation t ∈ R3. We ob-
serve from Equation (2) that when the point p on the plane
is transformed by M to the point p′ (say), the transformed
plane parameter

[
n′l d′l

]>
are given in terms of the initial

plane parameters by[
n′l
d′l

]
= M−>

[
nl

dl

]
(3)

=⇒
[
n′l
d′l

]
=

[
Rnl

−t>Rnl + dl

]
(4)

Now, given a pair of plane parameter matrices Li and Lj

and a set of correspondences between their columns de-
noted by the set Kij , we aim to estimate R and t that satis-
fies Equation (4), i.e., we solve the optimization:

min
{R,t}

∑
Kij

φ

([
njl

djl

]
−
[

Rnil

−t>Rnil + dil

])
(5)

where the tuple (il, jl) ∈ Kij denotes correspondence in-
dices. Note that the solution of R in Equation (5) depends
only on the corresponded plane normals and is independent
of the solution of t. Further, if we choose φ(·) = ‖·‖22 as
the distance metric, then the optimal least-squares estimate
of R is given by Umeyama’s method [22], simplified for
a pure rotation scenario. Having estimated R, the optimal
least-squares estimate of t becomes the solution of a system
of linear equations in t:

n>i1R
n>i2R

...
n>iXR

 t =


di1 − dj1
di2 − dj2

...
diX − djX

 (6)

where we must have X = |Kij | ≥ 3 for a non-trivial alge-
braic solution to exist.

4. The Registration Pipeline
In this Section, we list and describe the various compo-

nents of our pipeline.

1. Plane Segmentation: Segment planar regions from
raw depth scans by incorporating a sensor noise model,



2. Plane Correspondence: Solve for correspondence
between the plane representations across scans using
invariance to the underlying motion of plane positions
relative to each other within scans,

3. Motion Estimation: Solve for motions between
scans using parameters of corresponded planes; also
use non-planar regions in a robust modification of
Umeyama’s method [22] if required,

4. Global Registration: Register all scans to a global
frame of reference using robust motion averaging of
the estimated pairwise motions.

We detail each of these steps in turn.

4.1. Plane Segmentation

It is well-known that for stereo based structured-light
depth sensors, the noise or uncertainty in depth varies
quadratically with depth. However, for the purposes of seg-
mentation, we use the disparity map as a more convenient
representation since disparity has uniform uncertainty that
is independent of the disparity value. In our approach in this
subsection, we closely follow the proposal of [2]. Suppose
a 3D point

[
X Y Z

]>
is projected to a pixel location[

x y
]>

in the sensor. Then we have,

x =
fX

Z
+ u; y =

fY

Z
+ v (7)

where f is the focal length and (u, v) is the principal point
of the sensor. The disparity at point

[
x y

]>
is given by

D(x, y) = fB
Z , where B is the baseline distance between

the projector and the camera center. Now if
[
X Y Z

]>
lies on a 3D plane satisfying the equation: aX+bY +cZ+
1 = 0, then by multiplying both sides by f

Z , we have

a(x− u) + b(y − v) + cf +
f

Z
= 0 (8)

=⇒ ax+ by +
D(x, y)

B
+ (cf − au− bv) = 0 (9)

Thus, we have an affine relationship between the image
points corresponding to planar regions and their disparity
map, which we use to carry out plane segmentation. In
practice, we pass each noise-filtered disparity map through
a Laplacian-of-Gaussian (LoG) filter, which has a high re-
sponse for sharp changes in the input and zero response
for smooth regions, to detect the planar regions. In other
words, up to noise, in planar regions we expect the LoG fil-
ter to have a zero response. Once we have the association of
points in a disparity map with planes thus detected, we pro-
ceed to estimate the plane parameters as follows. Given co-
planar points of the form

[
xi yi

]>
corresponding to 3D

points
[
Xi Yi Zi

]>
, i = 1, 2, . . . , n, n ≥ 3, we have

from Equation (8),
x1 − u y1 − v f
x2 − u y2 − v f

...
...

...
xn − u yn − v f


ab
c

 = −f


Z1

Z2

...
Zn

 (10)

We solve Equation (10) for
[
a b c

]>
using standard

least-squares optimization techniques. Next, we perform k-
means clustering on the estimated plane parameters to find
the largest coherent regions in each map corresponding to
3D planes. Figure 1 shows an example of planes segmented
from a raw depth map using this approach.

(a) Raw depth map (b) Segmented planes

Figure 1: Segmentation of raw depth maps into planar regions

4.2. Plane Correspondence

Once the scans are segmented into planar regions, we
need to find correspondences between planar regions across
scans in order to find the relative motions between the scans.
Given a pair of plane segmented 3D scans containing mi

andmj planes respectively, we collect all the corresponding
plane parameters from the first scan in the matrix Li and
similarly from the second scan in a matrix Lj , as detailed in
Section 3. The correspondence of planes between the scans,
Kij , is then ideally obtained from the result of operating a
permutation matrix Kij that takes us from Li to Lj (or vice
versa), i.e., in a least-squares optimization sense,

Kij = arg min
K

‖Lj − LiK‖2

s.t. kl ∈ {e1, . . . , emi
,0mi

} for l = 1, . . . ,mi (11)

where K ,
[
k1 . . . kmi

]
, we consider mi ≥ mj and

the set {e1, . . . , emi
} represents themi-dimensional canon-

ical bases. Note that some columns of Kij may have only
zeros, indicating that the respective columns in Li do not
have any correspondence in Lj .
However, the permutation matrix is hard to solve for di-
rectly in an optimization setup. There are two common ap-
proaches to solve for this permutation matrix analytically.

• Considering 3D points in place of plane normals, we
can view the point features (representations of the



points in the scans that take into account the local ge-
ometric properties of shape) to be corresponded be-
tween the two scans as the disjoint vertex sets of a
weighted bipartite graph, and find an injection between
the sets with minimum weight. Gelfand et al. [6] de-
veloped a popular solution to this problem, where they
exploit the rigidity of the motion between the scans
to prune the search space of a branch and bound algo-
rithm used to obtain the required correspondences, and
make the algorithm fast and efficient.

• Graph Isomorphism approach, where the points in
the two scans form the vertices of two graphs respec-
tively, and the weights of the corresponding edges of
the graphs are based on the chosen measure between
the intra-scan points that is invariant to the underlying
rigid motion. The correspondence problem is then re-
cast as the problem of finding an isomorphism between
the graphs of the two scans, which has known efficient
analytic solutions [21, 1, 19].

In the present scenario, we have plane parameters in place
of actual points. Given the two sets of plane normals in Ni

and Nj , one can easily show that the angles between the
plane normals within each scan are invariant to any rigid
motion applied on the scans, indicating that the graph iso-
morphism approach is more suited to our representation.
Thus we define fully connected graphs Gi = {Vi, Ei,Wi}
and Gj = {Vj , Ej ,Wj} respectively for the scans i and j
such that:

• Vi and Vj represent the columns of the plane normal
sets in corresponding scans i and j,

• for all edge in Ei, its weight inWi is the angle between
the two normals (vertices) it joins, and similarly

• for all edge in Ej , its weight inWj is the angle between
the two normals (vertices) it joins.

The solution of the permutation matrix K described in
Equation (11) can now be recast as one of finding an iso-
morphism between the graphs Gi and Gj . One of the
most prominent solutions to solving for the weighted graph
isomorphism problem (WGIP) analytically has been given
by Umeyama [21], which finds an isomorphism between
weighted graphs with equal number of vertices if they are
isomorphic or nearly isomorphic. In this paper, we use
a popular software implementation of this solution in the
GraphM package [26], which pads dummy nodes wherever
required without affecting the process of Umeyama’s solu-
tion, so that arbitrary input graph pairs always have equal
number of vertices.

4.2.1 Ill-definition of the WGIP

The WGIP problem becomes ill-defined when

1. all the edges in the graph have the same weight, e.g.,
the corner of a room with two walls and the floor (or
the ceiling) that are mutually orthogonal, or

2. the graph consists of only two vertices and one edge
connecting them, which occurs frequently in practice
when only two planes are detected in scenes, e.g., two
walls of a room.

In both these cases, all possible permutation matrices
produce the same optimization cost, and are thus deemed
equally likely to be the correct permutation. We circumvent
this issue in practice by assuming a small enough motion
between adjacent scans (as is common in datasets used in
SLAM, navigation and other such common scenarios) and
applying nearest neighbor matching on the columns of their
plane parameter sets Li and Lj .

We also note that planes that are parallel to each other
within scenes have normals that form equivalence classes
with respect to any rotation applied on them. Thus, in or-
der to recover a non-trivial rotation between a pair of scans
using matched plane normals, we should pick a single mem-
ber from each equivalence class of normals from either scan
and find correspondences only between them. For practical
considerations of noise in the estimation of the plane param-
eters, we pick the plane with the largest number of pixels
from each equivalence class, which will have the noise aver-
aged out over more points on the plane than others. Figure
2 demonstrates this procedure for a sample pair of scans,
each containing six planes belonging to three equivalence
classes.

4.3. Motion Estimation

As noted earlier in Section 3, we solve for the rotation
first, followed by solving for the translation.

4.3.1 Rotation Estimation

The optimal solution to the underlying rigid motion in
the least-squares sense based on point correspondences has
been given by Umeyama [22]. In the current approach, we
estimate only the optimal rotation with Umeyama’s method
using the correspondence between plane normals clustered
into equivalence classes. Equations (2) and (4) together
show that the same rotation that applies between the cor-
responded points across scans, applies between the corre-
sponded plane normals as well. Thus, if Ni and Nj contain
the representative plane normals of the equivalence classes
in scans i and j respectively, then the rotation Rij going
from scan i to scan j is given by,

Rij = USV> (12)



(a) left scan with segmented
planes in equivalence classes
{l1, l4}, {l2, l5}, {l3, l6}

(b) right scan with segmented
planes in equivalence classes
{r1, r4}, {r2, r5}, {r3, r6}

(c) left scan with highlighted
largest plane from each equiv-
alence class: l1, l2, l3

(d) right scan with highlighted
largest plane from each equiv-
alence class: r1, r2, r3

Figure 2: Classification of planes into equivalence classes: (2a)
and (2b) show the parallel planes in the left and the right scans
have been classified into equivalence classes and are shown in
same color. (2c) and (2d) show the largest plane from each equiv-
alence class in either scan highlighted in a denser color. Rotation
estimation is performed using only these highlighted planes.

where UDV> is a singular value decomposition of NjN
>
i ,

D = diag(di), di ≥ dj ∀ i > j,

S =

{
I if det(NjN

>
i ) ≥ 0

diag(1, 1,−1) if det(NjN
>
i ) < 0.

However, this method is unreliable if we have only two cor-
responding normals between scans, as shown by Eggert et
al. [4]. For such scenarios, we follow the approach devel-
oped by Horn et al. [12] and later modified by Eggert et al.
[4] to estimate the rotation between a pair of corresponded
3D points. As stated earlier, the same rotation applies be-
tween the corresponded plane normals, hence the estimate
Rij in our case is given by

Rij = NjN
>
i Q±

Z√
|trace(Z)|

(13)

where

Q =

(
u1u

>
1√
λ1

+
u2u

>
2√
λ2

)
,

Z =
[
(NjN

>
i S)(NjN

>
i S)> −I

]
u3u

>
3

and {λj}, {uj} are the eigenvalues and corresponding
eigenvectors of the matrix NiN

>
j NjN

>
i . The sign in Equa-

tion (13) is chosen such that det(Rij) = 1.

4.3.2 Translation Estimation

A non-trivial least-squares solution of the optimal transla-
tion as obtained from Equation (6) requires at least three
corresponding planes to exist across scans. However, real
world scenes frequently have only two planes in scans,
which makes the above approach ambiguous. In such cases,
we use the estimated rotations to make the scans parallel
to each other and employ a simplified version of the point
based ICP algorithm to solve only for the underlying trans-
lation. This simplified ICP approach for pure translation
converges to a locally optimal solution extremely fast.

4.3.3 Motion Estimation using Non-Planar Regions

The complete motion estimation procedure stated above
works only when we have at least two non-parallel planes
corresponded between scans. In practice, we have cases of
non-correspondence of planes between scans or a lack of
planes altogether in the scans. In such scenarios, we use
a robust modification of Umeyama’s point-correspondence
based motion estimation method [22] to estimate the mo-
tions for all such scan pairs.

4.4. Global Registration

Once we have estimated motions between scan or equiv-
alently their corresponding camera pairs, we can gener-
ate a viewgraph G = {V, E} for the given set of scans
or correspondingly cameras, where for each camera pair
{i, j} ⊆ V , the edge (i, j) ∈ E represents that the pairwise
motion Mij has been estimated between them. Note that in
practice certain edges (i, j) may be non-existent. Our ob-
jective is to obtain the absolute motion Mk of each vertex
k of the viewgraph in some global frame of reference. It
is straightforward to show that for all camera pairs {i, j},
the absolute motions Mi and Mj are related to the pairwise
motion Mij as

Mij = MjM
−1
i (14)

We can clearly see that to produce a minimal solution for the
absolute motions from Equation (14), we need a spanning
tree in G. However, the motion estimates on the edges (pair-
wise motions) will, in general, be noisy, leading to uncon-
strained errors in the minimal solution. In order to constrain
such errors, we require at least one cycle in G. Given a min-
imum of N such pairwise motions for a set of N cameras,
we follow a robust modification of the motion averaging ap-
proach of Govindu [8] to compute the absolute motions of
each of the N cameras with respect to a global frame of
reference, which is typically chosen (without loss of gener-
ality) such that the origin is fixed to the center of one of the
cameras.



5. Results
5.1. Datasets

• Augmented ICL-NUIM Dataset. The original ICL-
NUIM dataset is based on the synthetic environments
provided by Handa et al. [10]. The availability of
ground truth surface geometry enables precise mea-
surement of trajectory estimates and reconstruction ac-
curacy. The dataset includes around 2500-2800 clean
and noisy depth images each of four models of in-
door environments: two living rooms and two offices,
all of dimensions roughly 5 × 5 × 3 m3. The av-
erage trajectory length of the available scenes is 36
meters for translation, while rotation covers the entire
360◦. Choi et al. [3] developed an augmented ver-
sion of this dataset that includes additional views of
the scenes. We conduct our experiments on this aug-
mented dataset.

• Sun3D Dataset. The Sun 3D dataset developed by
Xiao et al. [25] consists of sequences of scans of real
world indoor 3D spaces captured using standard RGB-
D sensors. They provide estimates of the camera tra-
jectories for the captured scans computed using SfM,
which we use as a reasonable proxy for the ground
truth for our comparison procedures. The sequences in
the dataset vary in size from 1000 to 8000 scans, col-
lected from around 10 different locations. Out of these,
we have chosen 4 sequences collected from 4 different
locations and consisting of scans with primarily planar
regions to test our method.

5.2. Experiments

We first present our pairwise motion — rotation followed
by translation — estimate results on the datasets as per the
following methodology:

• Rotation deviation: We compute the deviation of
our estimated rotation from the ground truth rotation
(RGT ) in terms of the angle and the axis deviations.
For a general estimate Rest, angle deviation is de-
fined as the 3D angle of the rotation matrix ∆R =
RGTR

−1
est, and axis deviation is simply the angle be-

tween the 3D rotation axes of RGT and Rest.

• Translation deviation: We compute the deviation of
our estimated translation from the ground truth trans-
lation (tGT ) in terms of the norm difference and the
heading deviation. For a general estimate test, norm
difference is given by ‖tGT − test‖, and heading
deviation is the angle between the translations, i.e.,
cos−1

(
tGT

‖tGT ‖ ·
test
‖test‖

)
.

We compare our results with results obtained using the
standard point based ICP algorithm implemented in PCL

[18, 11] augmented with a global motion averaging step
same as that used in our method, and Zhou et al.’s method
[27] that is currently the fastest and most accurate registra-
tion method based on point correspondences. Other global
registration models such as Kintinuous [24] have already
been shown to be outperformed by Choi et al.’s method [3],
which, in turn, has been further improved upon by Zhou et
al. [27]. Hence we do not list the performance of such meth-
ods for economy of space. Rotation estimates are given in
Table 1 and translation estimates in Table 2. Note that rota-
tion axis deviation and translation heading deviation do not
affect the registration procedure as critically as the corre-
sponding rotation angle deviation and translation norm dif-
ference if the latter are sufficiently small. We observe that
our method for pairwise motion estimation has lower devi-
ation from the ground truth compared to both ICP and Zhou
et al. [27], which are point based methods. A primary rea-
son for this is that the fitted plane normals are accurate since
the fitting process smooths out the sensor noise in individ-
ual points. Figure 3 provides a visual representation of the
registration alignment achieved by the different methods on
a sample pair from the sequence mit 32 d507/d507 2.
Our method is able to produce an alignment at par with that
of Zhou et al. [27] and perceptibly better than ICP.

left scan
right scan

(a) Unaligned scan pair (b) Aligned using ICP [18, 11]

(c) Aligned using Zhou et al.
[27]

(d) Aligned using our method

Figure 3: Registration alignment achieved by the differ-
ent methods on a sample pair of scans from the sequence
mit 32 d507/d507 2

Next, we report the mean distances of the reconstructed
surfaces to the corresponding ground truth models for the
various data sequences along with the respective running
times in Table 3. We calculated the mean distance to ground
truth surface using the open source CloudCompare soft-
ware [7] on the full reconstructions as per the instructions of
Choi et al. [3]. The reconstruction accuracy yielded by our
method matches that of Zhou et al. [27] and is appreciably
better than that given by ICP. However, our method avoids



Table 1: Rotation deviation with respect to ground truth for pairwise motions estimated by the different methods, reported as mean angle
and axis deviations in DEGREES

Dataset ICP [18, 11] Zhou et al. [27] Our method
Angle

deviation
Axis

deviation
Angle

deviation
Axis

deviation
Angle

deviation
Axis

deviation

A
ug

m
en

te
d

IC
L

-N
U

IM

livingroom1 clean 0.363 4.538 0.096 2.863 0.094 2.704
livingroom2 clean 0.125 4.432 0.094 3.854 0.091 3.666
office1 clean 0.243 3.526 0.118 2.311 0.066 2.041
office2 clean 0.183 4.093 0.107 2.544 0.075 2.416
livingroom1 noisy 0.588 7.378 0.350 4.264 0.292 3.919
livingroom2 noisy 0.436 7.931 0.357 4.636 0.221 4.305
office1 noisy 0.510 6.917 0.348 3.874 0.234 3.791
office2 noisy 0.594 8.457 0.305 4.362 0.222 4.127

Su
n3

D

brown bm 6/brown bm 6 0.141 4.617 0.129 3.351 0.106 2.957
harvard c8/hv c8 3 0.815 6.188 0.438 4.447 0.414 4.416
hotel barcelona 0.452 6.141 0.259 4.343 0.238 4.176
mit 32 d507/d507 2 0.170 7.585 0.104 3.980 0.086 3.791

Table 2: Translation deviation with respect to ground truth for pairwise motions estimated by the different methods, reported as mean norm
difference in METERS and mean heading deviation in DEGREES

Dataset ICP [18, 11] Zhou et al. [27] Our method
Norm

Difference
Heading
deviation

Norm
Difference

Heading
deviation

Norm
Difference

Heading
deviation

A
ug

m
en

te
d

IC
L

-N
U

IM

livingroom1 clean 0.018 3.534 0.008 2.268 0.006 2.142
livingroom2 clean 0.022 3.732 0.007 2.310 0.005 2.246
office1 clean 0.009 3.462 0.008 2.815 0.005 2.721
office2 clean 0.009 2.842 0.005 2.473 0.004 2.205
livingroom1 noisy 0.024 7.488 0.020 4.439 0.015 4.359
livingroom2 noisy 0.028 7.462 0.016 4.323 0.011 3.984
office1 noisy 0.022 6.568 0.015 3.962 0.012 3.675
office2 noisy 0.024 6.426 0.014 4.251 0.008 3.948

Su
n3

D

brown bm 6/brown bm 6 0.036 6.536 0.032 3.742 0.023 3.531
harvard c8/hv c8 3 0.019 3.991 0.017 2.957 0.015 2.463
hotel barcelona 0.017 6.184 0.013 3.256 0.010 3.117
mit 32 d507/d507 2 0.024 5.747 0.016 2.962 0.014 2.694

iteratively refined nearest neighbor based as well as feature
based dense point matching in majority of the scenes by ex-
ploiting the presence of planes, and is therefore significantly
faster than both these approaches. Additionally, the mem-
ory usage of our method is orders of magnitude smaller than
the point based methods as the input scans contain at most
8 to 10 3D planes. In contrast, the approach of Zhou et al.
[27] uses between 1,000 to 3,000 matched points per scan
pair.

Finally, we show the camera rotation and translation tra-
jectories recovered by our method and the corresponding
ground truth trajectories for one of the sequences, namely
office2 noisy, in Figure 4. The overall angle devia-

tion of the recovered rotation is at most 2.5◦, and the overall
deviation of the recovered translation along the three coor-
dinates is at most 0.12 m. Trajectories recovered by our
method for the other sequences are similarly close to the re-
spective ground truth trajectories.

6. Conclusion

We have presented a complete registration method that
exploits the presence of planar regions in 3D scans. It
performs well in scenes that have an adequate number of
planes. Apart from careful consideration of rotation and
translation estimation between pairs of scans, we also uti-



Table 3: Mean distance from ground truth surface for full reconstruction of the individual data sequences in METERS and running times of
the complete registration algorithms on the datasets, measured on an Intel Core i7-5960X 3 GHz processor with 32 GB RAM in SECONDS

Dataset Mean distance Running time
ICP

[18, 11]
Zhou et
al. [27]

Our
method

ICP
[18, 11]

Zhou et
al. [27]

Our
method

A
ug

m
en

te
d

IC
L

-N
U

IM

livingroom1 clean 0.06 0.04 0.04 13,800 7,175 1,270
livingroom2 clean 0.04 0.03 0.03 11,300 5,875 790
office1 clean 0.05 0.02 0.02 12,910 6,720 1,100
office2 clean 0.05 0.03 0.03 12,220 6,350 810
livingroom1 noisy 0.10 0.05 0.05 14,260 7,460 1,380
livingroom2 noisy 0.07 0.06 0.06 11,680 6,110 970
office1 noisy 0.08 0.03 0.03 13,370 6,990 1,270
office2 noisy 0.08 0.05 0.05 12,620 6,600 1,050

Su
n3

D

brown bm 6/brown bm 6 0.10 0.06 0.06 5,300 2,830 750
harvard c8/hv c8 3 0.07 0.05 0.05 4,900 2,620 950
hotel barcelona 0.08 0.05 0.05 13,280 7,110 2,540
mit 32 d507/d507 2 0.07 0.04 0.04 26,590 14,240 5,500

(a) Ground truth angles of rotations and our recovered
angles of rotations in DEGREES

(b) Ground truth translations and our recovered transla-
tions along x-coordinate in METERS

(c) Ground truth translations and our recovered transla-
tions along y-coordinate in METERS

(d) Ground truth translations and our recovered transla-
tions along z-coordinate in METERS

Figure 4: Full camera trajectory recovered by our method plotted along side the corresponding ground truth camera trajectory

lize a robust motion averaging step that efficiently averages
the relative motion estimates to provide a global solution for
the 3D registration of all scans. While our method performs
at par with the state-of-the-art approaches in the literature,
owing to our use of 3D planes in the scans, our method is
significantly faster. Moreover, since the planar represen-
tations adequately summarize the 3D information of many

points, our approach results in significantly smaller memory
requirements.
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