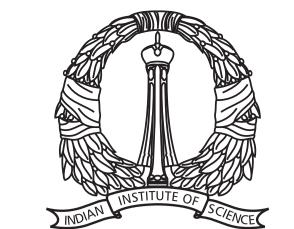


# Robust Feature-Preserving Denoising of 3D Point Clouds

# Sk. Mohammadul Haque, Venu Madhav Govindu



Department of Electrical Engineering, Indian Institute of Science, Bengaluru, INDIA

#### Introduction and Problem Definition

#### 3D Noise and Outlier

- 3D point clouds obtained from real world are invariable corrupted with significant amounts of **noise**.
- Accurately estimating an underlying surface becomes difficult due to the presence of **outliers**.
- Need to **identify and remove** outliers before further processing of the point cloud data.
- Need to estimate surface **robustly** to preserve sharp and fine-scale 3D features.

#### **Problem Definition**

Given an initial noisy point cloud,  $\mathbf{V} = {\{\mathbf{v}_i\}}_{i=1}^N$ , possibly with outliers where  $\mathbf{v}_i$  is the  $i^{th}$  noisy point position and N is the total number of points, estimate the unknown true point cloud as  $\hat{\mathbf{V}} = \{\hat{\mathbf{v}}_i\}_{i=1}^N$ .

### Our Contribution

- An approach to robustly denoise point clouds while preserving fine-scale features that:
- at first aggregates comparisons of individual points in a neighbourhood to identify and remove outliers, and
- then uses a robust denoising of the 3D points on the surface encouraging the careful **delineation and** preservation of sharp and fine-scale 3D features surface.

#### Proposed Method

#### Three steps:

- 1 Robust outlier detection and removal Outliers are detected and removed based on an initial estimate of the **point normals** and the  $\ell_2$  **distances** between 3D points.
- Bilateral normal mollification The initial estimates of the point normals are mollified.
- 3 Point set reposition The point set is robust repositioned using the mollified point normals.
- Robust outlier detection and removal:
- s-neighbourhood function:

$$\mathcal{N}(i) = \{\mathbf{v}_j \in \mathbf{V} | \|\mathbf{v}_j - \mathbf{v}_i\| \le \|\mathbf{v}_k - \mathbf{v}_i\|, \forall k \notin \mathcal{N}(i) \text{ and } |\mathcal{N}(i)| = s\}.$$

**Normal Computation**:

Normal at vertex 
$$\mathbf{v}_i$$
,  $i\mathbf{n}_i = \underset{\mathbf{n},\mathbf{n}^T\mathbf{n}=1}{\operatorname{argmin}} \sum_{j \in \mathcal{N}(i)} w_{ij}\mathbf{n}^T \left( (\mathbf{v}_j - \boldsymbol{\mu}_i) (\mathbf{v}_j - \boldsymbol{\mu}_i)^T \right) \mathbf{n}$ 

where  $\mu_i$  is the co-ordinate-wise median of  $\{\mathbf{v}_j\}_{i\in\mathcal{N}(i)}$ ,  $w_{ij}=\|\mathbf{v}_j-\mathbf{v}_i\|_2^{-1}$ .

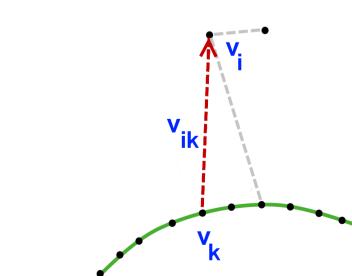
- Two **criteria** for detecting outliers:
- ✓ Normal-based outlier detection:

Dissimilarity, 
$$DS(\mathbf{v}_k, \mathbf{v}_i) = (\mathbf{n}_k^T \mathbf{n}_i) \frac{\|\mathbf{v}_{ik}^{\parallel}\|}{\|\mathbf{v}_{ik}^{\perp}\| + \epsilon}$$

$$\sum_{k \in \mathcal{N}(i)} DS(\mathbf{v}_k, \mathbf{v}_i)$$
Effective Dissimilarity,  $EDS(\mathbf{v}_i) = \frac{\sum_{k \in \mathcal{N}(i)} DS(\mathbf{v}_k, \mathbf{v}_i)}{|\mathcal{N}(i)|}$ .

 $\mathbf{v}_i$  is outlier if  $EDS(\mathbf{v}_i)$  is above a threshold  $\eta_n$ .

✓ Distance-based outlier detection:



$$d_{med}\left(\mathbf{v}_{i}\right) = \mathrm{MEDIAN}\left(\left\{\left\|\mathbf{v}_{ik}\right\|_{2}\right\}_{k \in \mathcal{N}(i)}\right).$$
  $\mathbf{v}_{i}$  is outlier  $d_{med}\left(\mathbf{v}_{i}\right) > \eta_{d}.$ 

#### 2 Bilateral normal mollification:

- Points normals are mollified in an iterative manner.
- A bilateral weight is used.

$$\hat{\mathbf{n}}_{i} \leftarrow \left( \sum_{j \in \mathcal{N}(i) \cup i} \phi_{ij} \hat{\mathbf{n}}_{j} \right) / \left\| \sum_{j \in \mathcal{N}(i) \cup i} \phi_{ij} \hat{\mathbf{n}}_{j} \right\|_{2}$$

$$\left( \|\hat{\mathbf{n}}_{j} - \hat{\mathbf{n}}_{i}\|^{2} \|\mathbf{v}_{j} - \mathbf{v}_{i}\|^{2} \right)$$

$$\sigma_{i:} = e^{-\left(\frac{\|\hat{\mathbf{n}}_j - \hat{\mathbf{n}}_i\|^2}{\sigma_r^2} + \frac{\|\mathbf{v}_j - \mathbf{v}_i\|^2}{\sigma_s^2}\right)}$$

and  $\sigma_r$  and  $\sigma_s$  are the normal and spatial scale parameters respectively.

# Proposed Method (Contd.)

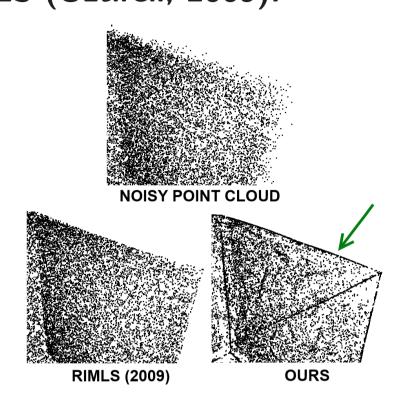
- (3) Point set repositioning:
- Robust enough to preserve fine features like edges and
- Enriches the fine features.

$$\min_{\left\{\tilde{\mathbf{v}}_{i}\right\}_{i=1}^{N}} \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)} \gamma_{ij} \left\|\hat{\mathbf{n}}_{i}^{T} \left(\tilde{\mathbf{v}}_{i} - \tilde{\mathbf{v}}_{j}\right)\right\|_{2}^{2} + \lambda \sum_{i=1}^{N} \left\|\tilde{\mathbf{v}}_{i} - \mathbf{v}_{i}\right\|_{2}^{2}$$

$$\gamma_{ij} = \frac{\tau_{ij}}{\sum_{j \in \mathcal{N}(i)} \tau_{ij}}, \ \tau_{ij} = \exp\left(-\frac{\|\tilde{\mathbf{v}}_j - \tilde{\mathbf{v}}_i\|^2}{\sigma_s^2}\right)$$

are the weights used to adaptively set the influence of the neighbours,  $\hat{\mathbf{n}}_i$  are the mollified normals,  $\mathbf{v}_i$  are the noisy point positions and  $\lambda$  is a small positive stabilising parameter to ensure a stable solution.

**Automatic recovery of fine structures** in our point set repositioning scheme as compared to the output from RIMLS (Oztireli, 2009).



#### Results: Outlier Detection and Removal (Synthetic Data)

Comparative performances of SOR (Rusu et al. 2008, 2011), ROR (Rusu et al. 2011), MCMD\_Z (Nurunnabi et al. 2015) and our method.

| Innut Madal | Outliers    |                    | Accuracy |       |             |       |
|-------------|-------------|--------------------|----------|-------|-------------|-------|
| Input Model | Density (%) | Std. deviation (%) | SOR      | ROR   | $MCMD_{-}Z$ | Ours  |
| Cube        | 20          | 10                 | 0.939    | 0.927 | 0.927       | 0.939 |
| N = 49154   | 40          | 20                 | 0.880    | 0.905 | 0.703       | 0.926 |
| Sphere      | 20          | 10                 | 0.949    | 0.921 | 0.937       | 0.952 |
| N = 40962   | 40          | 20                 | 0.902    | 0.934 | 0.636       | 0.951 |
| Bunny       | 20          | 10                 | 0.941    | 0.928 | 0.890       | 0.959 |
| N = 40245   | 40          | 20                 | 0.949    | 0.933 | 0.670       | 0.969 |

Visual comparison of outlier removal on a cube and the Bunny for outlier density of 40% with standard deviation of 20% of the point cloud dimensions in presence of Gaussian noise of std. dev. of avg. edge length of original meshes.

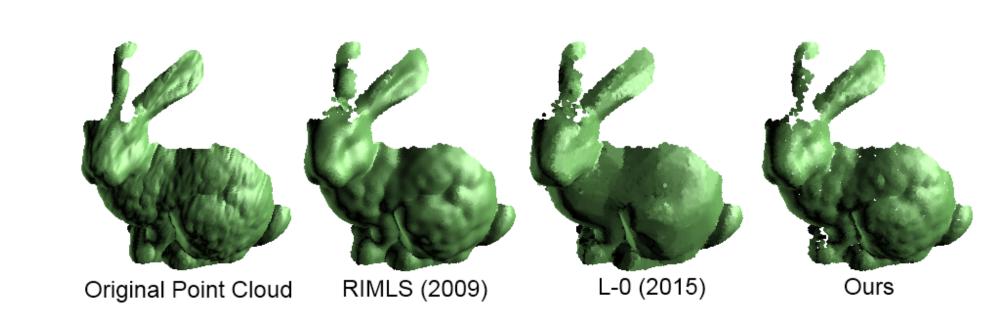


#### Results: Denoising (Synthetic Data)

Comparison of denoising performance of our method with RIMLS (Oztireli et al. 2009) and  $\ell_0$ -method (Sun et al. 2015).

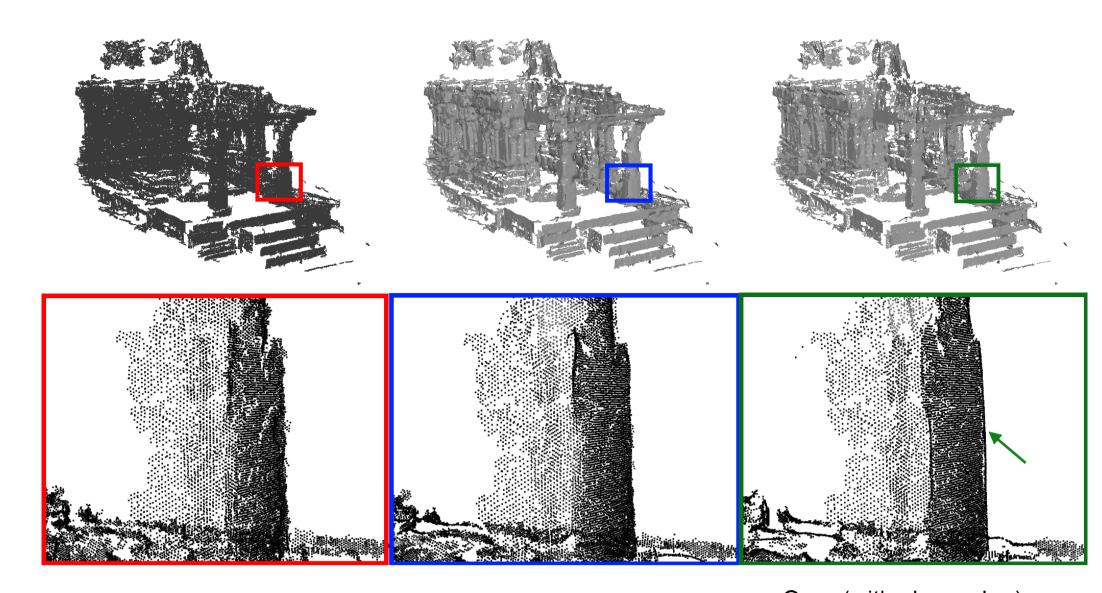
| Input Model            | Noise Std. Dev.    | Mean cloud-to-mesh $\ell_2$ distance |          |        |
|------------------------|--------------------|--------------------------------------|----------|--------|
|                        | (Avg. Edge Length) | RIMLS                                | $\ell_0$ | Ours   |
| Cube, <i>N</i> = 49154 | 100%               | 0.0016                               | 0.0041   | 0.0005 |
| Sphere, $N = 40962$    | 100%               | 0.0046                               | 0.0156   | 0.0049 |
| Bunny, $N = 40245$     | 100%               | 0.0023                               | 0.0054   | 0.0021 |

Visual comparison on a noisy Bunny (N = 40245).



## Results: Denoising (Real Data)

Comparative results on a point cloud (N = 919851) of a heritage monument in the Vitthala temple complex at Hampi, India, obtained from multi-view stereo.

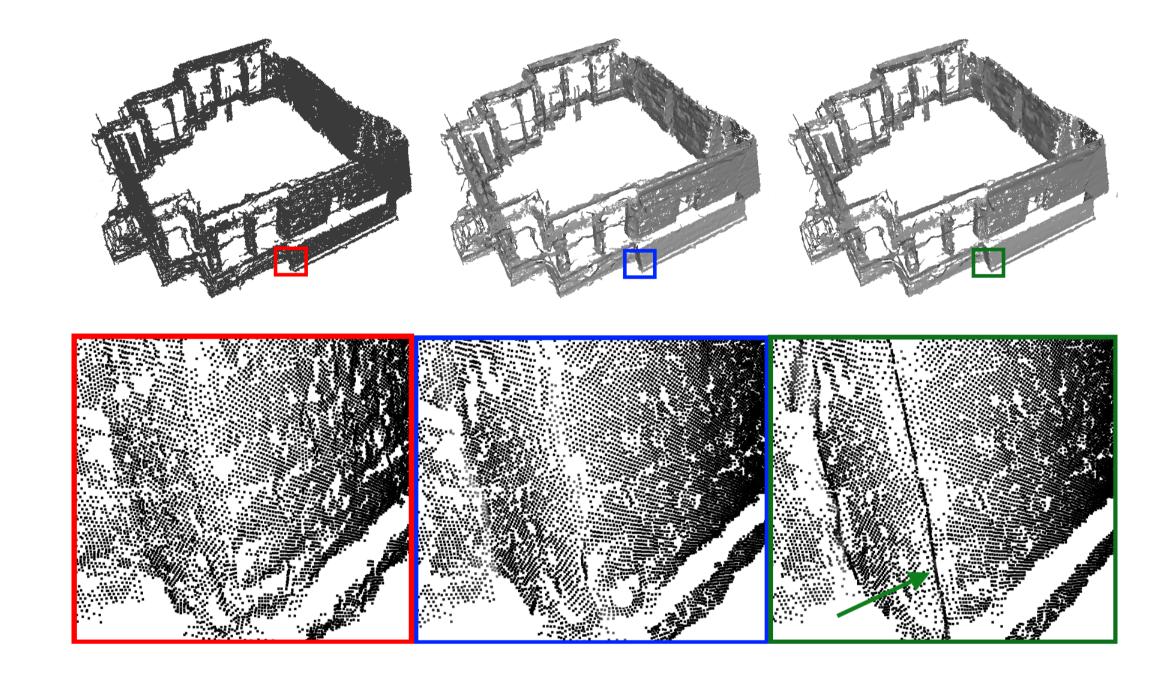


**Noisy Point Cloud** 

RIMLS (2009)

Ours (with clear edge)

Comparative results on a point cloud (N = 1030980) of another heritage monument in the Vitthala temple complex at Hampi, India, obtained from multi-view stereo.

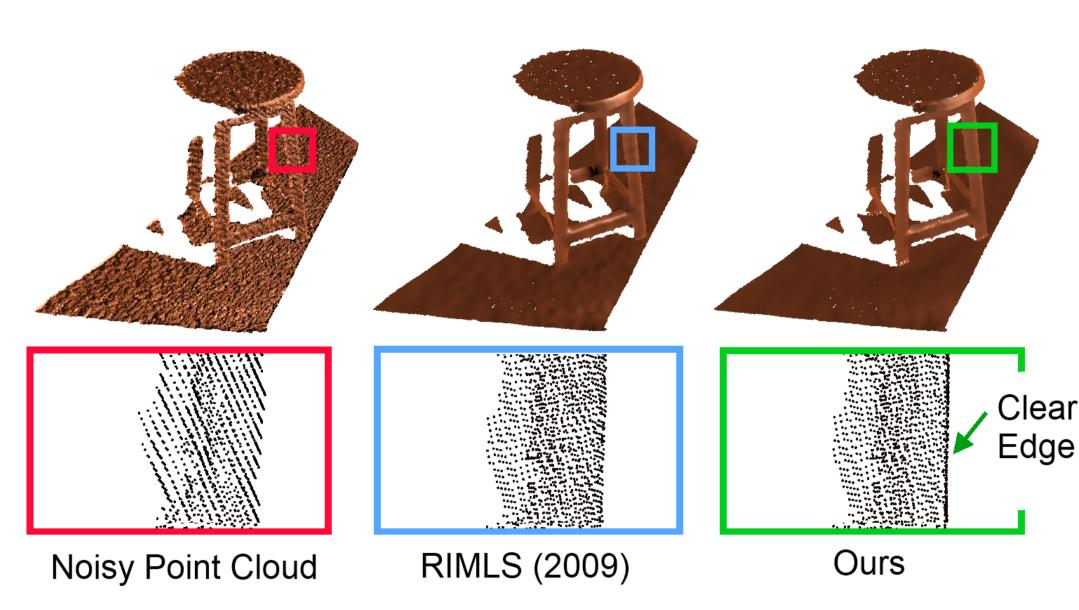


Noisy Point Cloud

RIMLS (2009)

Ours (with clear edge)

Comparative results on a point cloud (N = 153288) of a stool obtained using a depth scanner.



#### Conclusion

- A robust 3D point cloud denoising method consisting of a robust outlier detection and removal, bilateral normal mollification and finally a repositioning of the 3D points that preserve the fine scale features is presented.
- Our method automatically recovers well-defined edges and corners.
- The efficacy of our approach over other relevant methods in the literature is established through multiple examples and experiments.