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® Why do we need learning in vision?



® Why do we need learning in vision?

® Should every solution be learnt?



a pie and a ~up of coffee.
Tasks in Computer Vision

® Segmentation, Recognition, Detection, Localisation

® Tasks on the image plane R?

® Deep Learning breakthrough, with problems

Adapted from Fig. 6.1 in Szeliski Computer Vision: Algorithms and Applications, draft 2nd edition
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Sparse model of central Rome using 21K photos produced by COLMAPs SfM pipeline.
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Dense models of several landmarks produced by COLMAP's MVS pipeline.

Geometric Problems in Computer Vision

3D Reconstruction from multiple images

® Geometry induced by pinhole camera

® Reasoning about 3D world from 2D images

Explicit reasoning and engineering used




Geometric Models are Explicit

® Geometric relations governed by pinhole model

Explicit models for observations

Epipolar Geometry: x’ Fx = 0

® Reprojection Error can be written in explicit form




Learning in Vision
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Role of Learning

e Different types of tasks

® Motion Estimation
® Shape Analysis

® Segmentation
® Theory, Model, Algorithms
® Understanding of physics (geometry) and statistics

® Higher-level Reasoning?
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Learning in Vision

Sources: brittanica.com scmp.com makemytrip.com curlytales.com taj-mahal.net rfi.fr viator.caf fimuseum.org easydrawing.net
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Why Learning?

Higher-level reasoning difficult to model

® Process of reasoning not fully described
¢ Interested in functional replication

Flexibility of model

Biological organisms learn

® Nature vs. Nurture debate




I shall reconsider human knowledge by starting
from the fact that we can know more than we
can tell. This fact seems obvious enough; but it
is not easy to say exactly what it means. Iake
an example. We know a person’s face, and can
recognize it among a thousand, indeed among a
million. Yet we usually cannot tell how we recog-
nize a face we know. So most of this knowledge
cannot be put into words.

Michael Polanyi
The Tacit Dimension, 1966

Learning in Vision

® Tacit vs Explicit Forms of Knowledge

® Perceptual vs Engineering Solutions
® “All models are wrong, some are useful” to “What models?”

® Polanyi’s Revenge

h/t Subbarao Khambampati’s talk Polanyi vs Planning
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Why Learning Now?

® Low-level vision well developed

¢ Difficult to formulate general models for reasoning

® Bypass through learning

® Explosion of image data, internet

® Growth of computational power

® Deep Learning

® Vision # Machine Learning # Deep Learning # AlI!

Szeliski 2nd edition



® Consult slides of Andreas Geiger, Computer Vision (2021) Lecture
10:Recognition
Link provided on lecture page
Slide numbers: 3 14-20 60 75 77-82 136 139-140

® Consult slides of Noah Snavely, Introuction to Computer Vision (2021)
Lecture 19: Introduction to Recognition
Link provided on lecture page
Slide numbers: 12-16 24-29



® Machine Learning Methods

® Deep Learning and Datasets

® Later: Fairness and Ethics
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Classification Regression

Problems in Learning

® (lassification

® Regression

® Clustering

javatpoint.com



Learning in Vision
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Approaches to Learning

® Supervised
® Unsupervised (self-learning)

® Semi-supervised

Szeliski 2nd Edition
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Training inputs Sll.lper\{lsed Training labels
earning
Input Model Output

Supervised Learning

® Use input-output pairs

® How do we get labels?
® How do we score for tasks?

® (Classification
® Detection
® Segmentation




Learning in Vision
Empirical Risk Minimisation

*yi=f(x;w)
EL(yi, f(x1; w))
True Risk: E(L(y, f(x; w)))

Classification (possibly asymmetric)

® Regression (think line fitting)

v

Statistical Learning Theory

® This is just a caricature

® Vast body of theoretical work

® Assumption: unknown underlying probability

® Training samples drawn from pdf

® Test from same pdf (Generalisation ?)
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Traerhing s pem—
« High training error « Training error slightly lower « Very low training error
« Training error close to test than test error « Training error much lower
syropeons
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Error Error

Deep learning

® Expressiveness
® Complexity

® Over vs. underfit
® Deep learning

Exror

® Too many parameters
® Generalisation?
® When?

illustration
Epochs Epocts Epochs
Possible jcomplexky mocel « Perform regularization
- Add more features
remedies

- Train longer

https://www.kaggle.com/getting-started/166897

- Get more data
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under-fitting over-fitting

. Test risk
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~ 'Training risk
sweet spot_ v — _
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Capacity of H

https://blog.ml.cmu.edu/2020/08/31/4-overfitting/
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Bayes Classifier

p(x[Cp)p(C) exp
(Grlx) = =
R Y Y
where [ = log p(x|Ci) + log p(C)
® Logistic function: o (/) = H% forl=10 -1
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PG = el ) 'S - )}
= p(Glx) = U’(WTX +b)

Discriminant Analysis

® Binary Classification

® Assume Gaussian distributions (further for 2-class, assume same
covariance )

® Result is logistic regression

® Linear Discriminant Function: compare wkT X+ b

® Tor non-equal ¥, quadratic discriminant function
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pi = p( C()|X,*) = O'(WTXI' + b)
= Ecp(w,b) = —Yitilogp;+ (1—t;)log(l— p;)

® Gaussian assumption too strong

® Work with posterior

® Cross-entropy Loss

® One-hot encoding

® Limitations: when not linearly separable

® Limitations: infinite solutions when separable
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exp li 1
ik = C i = _— e — ll
pk p( k|x ) 2/ exp ll] Zi OXP Lk
with [ = wka,- + b

= Eycce(Wk, br) = — XXkt log pur

Logistic Regression

® Gaussian assumption too strong
® Work with posterior

® Cross-entropy Loss

® One-hot encoding

® Limitations: when not linearly separable

® Limitations: infinite solutions when separable
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Support Vector Machines

® Multiple solutions when separable
® Recognise that data is only partial

® Maximise margin of classifier

For not linearly separable: kernel regression
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Approaches to Learning

® Clustering using k-means

Szeliski 2nd Edition
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Figure 5.18  Face modeling and compression using eigenfaces (Moghaddam and Pentland
1997) © 1997 IEEE: (a) input image; (b) the first eight eigenfaces; (c) image reconstructed
by projecting onto this basis and compressing the image to 85 bytes; (d) image reconstructed
using JPEG (530 bytes).

Approaches to Learning

® Principal Component Analysis

* C=%(x—p)(x— )"
e C=UANU" =3 Nuu!
[ ]

~ T
C~ Zk )\kukuk

® Low dimensional representation

Project observation onto subspace

Szeliski 2nd Edition
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Deep Learning

® Simple nonlinear model of single neuron

Old idea of connectionism
Rosenblatt 1958; Rumelhart e al. 1986, Fukushima 1980
Cycles of interest

® Significant breakthroughs with deep layers

® Dominant paradigm today

Simon Haykin’s textbook; Szeliski 2nd Edition
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Figure 523 A perceptron unit (a) explicitly showing the weights being multiplied by the inputs, (b) with the
weights written on the input connections, and (¢) the most common form, with the
hted summation. © Glassner (2018)

Perceptron Model

® Feedforward networks

ghts and bias omitted. A

non-linear activation function follows the w

® Simple “neurons”, rich connections
y=h(s) = h(w”x+ b) o
WD) = =

® Key: Non-linearity of neuron 0

Simon Haykin’s textbook; Szeliski 2nd Edition
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Deep neural network

hidden layer 1 hidden layer 2 hidden layer

Multilayer Neural Networks

® Regular structure with layers

® Each layer outputs: s; = W;x;

® Next layer: x;41 = y; = A(s;)

o Output: y = hw, (hwy (-~ (%))

® Non-linear function mapping: y = H(x, W)
W: All weights in all layers!

® Expressive power
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Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Deep Neural Networks

® What is deep here?

® Non-linear with many many weights!
Breakthrough in 2012

Tsunami of DL approaches

® Completely taken over vision and ML (almost)
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Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Types of Neural Networks

® Layers with vector inputs

Noah Snavely’s slides; Kevin Murphy’s book
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Types of Neural Networks

® Layers with vector inputs

® Convolutional Networks (Receptive Fields)

Noah Snavely’s slides; Kevin Murphy’s book
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Memory
Cr1 &

Hidden state
Heq

Input X,

Types of Neural Networks

® Layers with vector inputs

® Convolutional Networks (Receptive Fields)
® Temporal Networks (LSTM, Transformer)

® Many more models

Noah Snavely’s slides; Kevin Murphy’s book
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Activation Functions
Sigmoid ’ Leaky ReLU N
”(z):ﬁ max(0.1z, )
tanh 1
tanh(z) I x«?f(g% T by, w4 by)
ReLU I ELU "
m0) /{2 S

Key Ingredients

® Non-linear activation functions

® Gradient descent for fitting

® Learning over masses of data

® Nested functions A(A(A(---))

® Derivatives using chain rule of calculus
® Learning through Backpropagation

® Stochastic Gradient Descent

https:/medium.com/@shrutijadonl0104776/survey-on-activation-functions-for-deep-learning-9689331ba092
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Activation Functions
Sigmoid | Leaky ReLU N
(@) = i max(0.1z, z)
tanh 1
tanh(z) f M«axx(g%tr T by, w4 ba)
ReLU I ELU "
md0) /{2 S

Key Ingredients

® Non-linear activation functions

® Gradient descent for fitting

® Learning over masses of data

® Nested functions A(A(A(---))

® Derivatives using chain rule of calculus

® Learning through Backpropagation

® Stochastic Gradient Descent (Graduate Student Descent)

htps;//medium.com/@shrutijadonl0104776/survey-on-activation-functions- for-deep-learning-9689331ba092
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Activation Functlons

SIngId Leaky RelLU i
O p—— max(0.1z, z)

tanh Maxout

tanh max(w] @ + by, wi x + by)
ReLU ELU

max (0, z) {Z(el _y : i 8 )

Activation Functions

Many functions

® Sigmoid is smooth

ReLU is simple and popular
ReLU has issues
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Figure 5.27  (a) A softmax layer used to convert from neural network activations (“score”) to class likelihoods
(b) The top row shows the activations, while the bottom shows the result of running the scores through softmax to
obtain properly normalized likelihoods. © Glassner (2018).

Softmax Layer

exp X;

[ i) i S,
b=y enn

Soft version of max

Often as last layer

® Converts outputs to class likelihoods
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Figure 5.28  An original “6™ digit from the MNIST database and two elastically distorted versions (Simard.
Steinkraus, and Platt 2003) © 2003 IEEE.

Data Augmentation

® Use training samples

® Reduce over-fitting

® Augment traning data with distortions




Learning in Vision
Original Image

.4

De-colorized

Data Augmentation

Edge Enhanced

Salient Edge Map

I/ . Flip/Rotate

*

Data Augmentation

® Variety of augmentations in range and domain

® Very hacky

https;//medium.com/@sauravkumarsct
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Invariances and Equivariances

® Invariance: Output doesn’t change with nuisance variable
® Equivariance: Invariance upto equivariant factor

* 1”p = (RI) (Rp) = 0

® Line fitting using different co-ordinate systems

® Recall OLS vs. TLS solutions

® Deep Learning can fail catastrophically

® Recent approaches more principled




Learmng 1n S101

Figure 5.50  Examples of adversarial images from © Szegedy, Zaremba et al. (2013). For
each original image in the left column, a small random perturbation (shown magnified by
10x in the middle column) is added to obtain the image in the right column, which is always
classified as an ostritch.

Learning can be Brittle

® Catastrophic failures
Why does this happen?

Explainable approaches
® GANs

Szeliski 2nd Edition
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() Standard Neural Net (b) After applying dropout.

Figure 5.29  When using dropout. during training some fraction of units p is removed from the network (or,
equivalently, clamped to zero) © Srivastava, Hinton ef al. (2014). Doing this randomly for each mini-batch injects
noise into the training process (at all levels of the network) and prevents the network from overly relying on

particular units.

Dropout

® Method for regularization

® Reduces overfitting, improves generalization

® Applies to each mini-batch

Szeliski 2nd Edition
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Figure 5.30  Batch norm, layer norm, instance norm, and group norm, from Wu and He (2018) © 2018 Springer.
The (H, W) dimension denotes pixels, C' denotes channels. and N denotes training samples in a minibatch. The
pixels in blue are normalized by the same mean and variance.

Batch Normalization

® Optimization is tricky, needs good conditions

Recall condition number, scaling
® Varying scales of weights, outputs

® Components of gradient scaled differently

® Simple scaling+recentering along layers etc.

Szeliski 2nd Edition
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Loss Functions

® Define optimization cost or loss

® (lassification vs. Regression

® Classification: Cross-entropy loss

® Contrastive learning, metric embedding
® Regression: typically least squares

® Issue: our confidence in output

Szeliski 2nd Edition
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Supervised
Unsupervised

Given “ground truth” F for

trz.umng data . ) minwy Zk Zi p(x;kTH(X’f, W)xf)
minyy Zk ||H(X ,W) - Fk”

Learning Epipolar Geometry

® Toy example illustration

® Supervised vs. Unsupervised Learning

e Correspondences X = {(x;,%,)|i=1,--- , N}

® Can contain outliers

® Learnt model F = H(X,W)

® Recall IRLS weights W = {w;,i=1--- N}

® Learn to estimate weights directly W crespondences = H (X, W)
® W orrespondences: Not to be confused with network weights W!

® “Learning to Find Good Correspondences”
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Solving for Weights

® Learning is an optimization problem

® Optimize what?

Szeliski 2nd Edition
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Solving for Weights

® Learning is an optimization problem

® Optimize what? Weights W

Szeliski 2nd Edition
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Solving for Weights

® Learning is an optimization problem
® Optimize what? Weights W
® How?

Szeliski 2nd Edition
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Solving for Weights

® Learning is an optimization problem
® Optimize what? Weights W

® How? Gradient Descent

Szeliski 2nd Edition
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Figure 5.31 Backpropagating the derivatives (errors) through an intermediate layer of the deep network ©
Glassner (2018). The derivatives of the loss function applied to a single training example with respect to each of
the pink unit inputs are summed together and the process is repeated chaining backward through the network.

Solving for Weights

® Learning is an optimization problem
® Optimize what? Weights W
® How? Gradient Descent

® Too much data for higher-order methods

® Key observation: two passes

Szeliski 2nd Edition
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Figure 5.31 Backpropagating the derivatives (errors) through an intermediate layer of the deep network ©
Glassner (2018). The derivatives of the loss function applied to a single training example with respect to each of
the pink unit inputs are summed together and the process is repeated chaining backward through the network.

® Backpropagation: Rumelhart, Hinton, Williams (1986)
¢ Compute output in forward pass

® Want to change weights W in descent direction

® Derivative of output wrt input x;?

® Summation of individual contributions

® Derivative of output wrt weights?

Szeliski 2nd Edition
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® Recall y = H(X, W) = hWN(th—l((. o (x))>)
® Loss: E= (y — H(x,W))?

® Denote y; = A(s;) = h(wlx)

’
[ ) %f:h(sl)%f

® What does y; depend on?
y = h(h(A(---)))

Szeliski 2nd Edition
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Figure 531  Backpropagating the derivatives (errors) through an i
Glassner (2018). The derivati
the pink unit inputs are summed together and the process is repeated chaining backward through the network.

Backpropagation

® Recall y; depends on outputs of previous layer

mediate layer of the deep network ©

of the loss function applied to a single tr example with respect to each of

® Recall y; affects subsequent layers

— OE

® Define ‘error’ ¢; = 5
i

oF _ O _ .
C o= Dk One D ki Witk

’ E ’
e =4 (si)%ﬁ =k (51) D 4o Witk
® Chain rule: Derivative of loss (error) wrt unit
® Depends on weighted sum of errors of units feeds into

® Store activations in forward pass

® Estimate in backward sweep (bfs)

Szeliski 2nd Edition
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Wit = Wy;—Qag
Define v;4y = pv,+g:
W1 = Ww; — av, with momentum

Training Issues

® Data too big for higher-order methods

® Just use gradient descent

® Gradient: sum of gradient terms of each x
® Stochastic Gradient Descent

Minibatches: -+ [- -+ ][---][---] - --

® Epoch: One cycle through batches

® o learning rate to be annealed (why?)

® p is relatively large

¢ Hyper-parameters
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Key Ingredients

® Large datasets are important

® Deep Networks

® Massive Compute Power
® AlexNet: 8 Layers; ResNet: 152 layers

® ImageNet Dataset: 1000 classes, > million images

Szeliski 2nd Edition
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73

Ethics of datasets

® Transparency of acquisition process, privacy

Ethics problems should not be ignored
® Large % of images removed from ImageNet
Ethics of labour (Amazon Mechanical Turk)

Obsession with test error

“Datasheets for Datasets”

Szeliski 2nd Edition
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Deep Learning for Images

® Convolutional Neural Networks

Locality of pixels propagated

® End-to-end learning

Unified approaches for multiple tasks

® Segmentation, Localization, Recognition

Kevin Murphy’s book



® Consult slides of Noah Snavely, Introduction to Computer Vision
(2021)
Lecture 21: Convolutional Neural Networks
Link provided on lecture page
Slide numbers: 57-100
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Image Maps
Input
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Object Recognition

® Major breakthroughs in recognition tasks
e Efficient computation of repeated convolutions
® Older approaches: Instance Recognition
® re-recognise specific objects
® Current approaches: Class or Category Recognition

® Variable classes: dogs, cats, chairs

Kevin Murphy’s book; Szeliski 2nd edition
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Tnput images with region proposals Object detection and part localizations Pose-normalized representation

Top scored object and
e i i =

Object Recognition

Major breakthroughs in recognition tasks

Efficient computation of repeated convolutions

Older approaches: Instance Recognition
® re-recognise specific objects
® Current approaches: Class or Category Recognition

® Variable classes: dogs, cats, chairs

® Fine-grained categories

Lummu

Northern
Flicker

Kevin Murphy’s book; Szeliski 2nd edition
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Object Detection

® Early work in detecting faces, people (pedestrians)
® FEarly neural networks

® Some used bag of words

Deformable parts model

® Boosting: Combine many simple features

Cascade of classifiers

Szeliski 2nd edition
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Figure 6.22  Simple fearures used in boosting-based face detector (Viola and Jones 2004)
© 2004 Springer: (a) difference of rectangle feature composed of 2~ different rectangles
(pixels inside the white rectangles are subtracted from the gray ones); (b) the first and second
features selected by AdaBoost. The first feature measures the differences in intensiry berween
the eyes and the cheeks, the second one between the eves and the bridge of the nose|

Object Detection

® Early work in detecting faces, people (pedestrians)

® FEarly neural networks

® Boosting: Combine many simple features

Some used bag of words

Deformable parts model

Cascade of classifiers

Szeliski 2nd edition
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Figure 6.19  Person detection and re-recognition using a combined face, hair, and torso model (Sivic, Zitnick,
and Szeliski 2006) © 2006 Springer. (a) Using face detection alone, several of the heads are missed. (b) The
combined face and clothing model successfully re-finds all the people.
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Figure 6.17  The DeepFace architecture (Taigman, Yang et al. 2014) © 2014 IEEE, starts
with a frontalization stage, followed by several locally-connected (non-convolutional) layers,

and then two fully connected layers with a K -class softmax.

Face Recognition

® High interest: Access, surveillance

® Seen PCA version earlier (EigenFaces)

® DL version: Frontalization + Recognition
® Works well in many contexts

® Accuracy “in the wild” is questionable

¢ Extraordinary crises around FRT

® Discuss in Ethics lecture

Szeliski 2nd Edition
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Past Early ~4 years Late
(best circa 2015 2018
2012)
49
et 39
Progress within 36
DL methods: 29
>3x! 19
15 —
s I3
DPM Fast R-CNN Fasl R CNN Fas(er R CNN Faster RCNN  Faster R CNN  Mask R-CNN
(Pre DL) (AlexNet) (ResNet-50) (R-101-FPN) (X-152-FPN)

Figure 6.29  Best average precision (AP) 1e<ult< by yem on the COCO object detecnon task (Lin, MalremuL
2014) © 2020 Ross Glrshlck

Generic Object Detection

® Major breakthroughs with DL
® Rectangular regions

® Based on sliding window tests
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How to Score Performance?

® Two types of errors
® Receiver Operating Characteristic (ROC)
® True Positive vs. False Positive
® Precision-Recall (PC)
® True, False, Number of Positives (TP,FP,NP)
o Precision=$
o Recall=%
® Average Precision (AP);meanAP (mAP) over all categories

htps;//www.r-bloggers.com/2020/01 der-th s Il-curve/
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Figure 6.28 The R-CNN and Fast R-CNN object detectors. (a) R-CNN rescales pixels
inside each proposal region and performs a CNN + SVM classification (Girshick, Donahue
et al. 2015) © 2015 IELE. (b) Fast R-CNN resamples convelutional features and uses fully
connected layers to perform classification and bounding box regression (Girshick 2015) ©

2015 IEEE.

Modern Object Detectors

® Rectangular Region Proposals + Classifier
® R-CNN: Region-based CNN

® ~2 2000 region proposals
® Fach warped to fixed 224 x 224 region
® Classify using SVM

Szeliski 2nd edition
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Figure 6.28 The R-CNN and Fast R-CNN object detectors. (a) R-CNN rescales pixels
inside each proposal region and performs a CNN + SVM classification (Girshick, Donahue
et al. 2015) © 2015 IELE. (b) Fast R-CNN resamples convelutional features and uses fully
connected layers to perform classification and bounding box regression (Girshick 2015) ©
2015 IEEE.

Modern Object Detectors

® Rectangular Region Proposals + Classifier

® Tast R-CNN
® End-to-end
® Resamples convolution features for proposals
® (Classify using fully connected network

Szeliski 2nd edition
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Figure 6.28 The R-CNN and Fast R-CNN object detectors. (a) R-CNN rescales pixels
inside each proposal region and performs a CNN + SVM classification (Girshick, Donahue
et al. 2015) © 2015 IELE. (b) Fast R-CNN resamples convelutional features and uses fully
connected layers to perform classification and bounding box regression (Girshick 2015) ©

2015 IEEE.

Modern Object Detectors

® Rectangular Region Proposals + Classifier
® Also Faster R-CNN
® Single network for detection+classification

® Single Shot Multibox Detector (SSD)
® You Only Look Once (YOLO)

Szeliski 2nd edition
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classifier
Rol pooling

proposals

R-CNN: Regiom with CNN features
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image roposals (~2k)  CNN features regions
Flgure 1: Object detection system overview. Our system (1)

takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), a.nd then (4) lesslﬁm each
region using class-specific linear SV. achieves a mean
average precision (mAP) of 53.7% on PAb(,AL VOC 2010. For
comparison, [ Y] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part mod erform at 33.4%.

On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%. a large improvement over OverFeat 41, which
had the previous best result at 24.3%.

RCNN and Faster RCNN papers

i
Region Proposal Networkg

feature maps

conv layers

4 /
s -
Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention’ of this unified network.
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Some results from RCNN paper



You Only Look Once

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

1gur The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

Single shot instead of two-stages
Directly predicts 2D bounding box
Faster, lower performance

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection’,
CVPR 2016

Many improvements

Ethics dimensions in next lecture
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Class probability map

You Only Look Once

® Single shot instead of two-stages
® Directly predicts 2D bounding box
® Faster, lower performance

® Redmon ef al., “You Only Look Once: Unified, Real-Time Object Detection’,
CVPR 2016

® Many improvements

® Ethics dimensions in next lecture
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Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although
does think one pers n airplane.

Results from YOLO paper
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(a) (b) (c) (d)

Figure 6.32  Evamples of image segmentation (Kirillov, He et al. 2019) © 2019 IEEE: (a)
original image; (b) semantic segmentation (per-pixel classification); (c) instance segmenta-
tion (delineate each object); (d) panoptic segmentation (label all things and stuff).

Semantic Segmentation

Standard segmentation: distinction between classes

® Pairwise potentials: similarity + proximity

No classification

® Semantic segmentation: per-pixel classification

Networks “percolate” semantic information to pixels
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(a) (b)

Figure 6.36  Instance segmentation using Mask R-CNN (He, Gkioxari et al. 2017) © 2017
IEEE: (a) system architecture, with an additional segmentation branch; (b) sample results.

Instance Segmentation

® Find all objects, give per-pixel masks
® Mask R-CNN

® Region proposal as Faster R-CNN
® Additional branch for mask prediction
® Training loss carefully combines all parts

Szeliski 2nd edition



® Consult slides of Andreas Geiger, Computer Vision (2021) Lecture 9:
Co-ordinate Based Networks
Link provided on lecture page
Slide numbers: 54-66



Learning in 3D Geometry Estimation



\ 4

Ranftl et al., “Tow:

Progression from Tacit to Explicit Problems

ds Monocular Depth Estimation’shttp;/3dstereophoto.blogspot.com; https;//www.cs.cornell.edu/projects/bigsfm

g P s5F =5




3D Geometry Problems

® Correspondence is ambiguous for low texture
® . dense depth estimation has tacit parts

® Geometric problems with explicit forms

® camera motion estimation
® sparse triangulation for corners

® Recognise distinction between tacit and explicit aspects

Implications for accuracy and reliability

Ranfil ¢t al., “Towards Monocular Depth Estimation’;http://3dstereophoto.blogspot.com; https://www.csccornell.edn/pivjects/higsfm,



Original Midas 5 Original Midas

Monocular Depth

® Very impressive, but what kind of depth is it?

® Notions of depth: Euclidean, quasi-Euclidean, ordinal, bounding box

® Semantic segmentation of depth is useful for tasks

Miangoleh ¢t al., ‘Boosting Monocular Depth .., CVPR 2021



® Learnt models for specific narrow contexts

® Lessons
® networks ignore apparent size
use vertical position of objects
dark region used to detect obstacles
brittle and unreliable

van Dijk et al., ‘How Do Neural Networks See Depth in Single Images?, ICCV 2019



Two-View Stereo

Recover dense depth with known geometry

® Stereo is a correspondence problem

® Many ambiguities and issues

® Search constraint + ambiguous correspondence

® — mixture of explicit and tacit problems

hitpy//3dstereophoto.blogspot.com

g P s5F =5 = =




i
Dense models of several landmarks produced by COLMAP's MVS pipeline.

3D Reconstruction from Many Images

Geometry induced by pinhole camera
® SLAM vs StM

® Significantly different motion and noise distributions

Implications for use of brightness constraint
) D> «Fr «F



Global Approaches to StM

® Jointly solve geometry over all cameras

® Many two-view relative motions available
® Averaging: Solve global rotations and translations

® Solve for 3D structure and refine
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Rotation Averaging
® Viewgraph of camera-camera relations
® Given R; on each edge

® Solve for individual cameras R;
® Use relationship: R; = Rijl

® Optimisation of robust geometric cost




Rotation Averaging

® Deep learning does well compared to geometric methods
® Key factors

® Distribution of rotations
® Distribution of noisetoutliers
® Distribution of viewgraph edges

® Combinatorial explosion
¢ Is accuracy on datasets enough?
® What is learnt?

How reliable are learnt models?




Forstner, Photogrammetric Computer Vision

Gauge Freedom

Arbitrary choice of basis

Rotations should be equivariant
Natural for geometric methods

Not for learnt models

d P ST =5 = =




Piazza del Popolo

| | —&— DeepLearning
—~&— Geometric

Mean error in degrees
w
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Noise amplification factor

Robustness

Good performance on noisy real-world SfM datasets

® Consider perfect data: R;; = RjR;I exactly

Exact solution exists

DL method has non-zero error
What has it learnt?




SLAM sequences

® Smooth sequences

® dense connectivity
® small rotations

® Loop closures are very useful
® DL method trained on SfM data fails here
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Some Observations

® Geometry is fundamental in vision

® Desired accuracy: qualitative vs. metric

® Limitations are understood: ambiguous configurations, high noise,
outliers

® Deep Learning for geometry

® works well in narrow contexts

® combinatorial explosion difficult to tame
® Jacks desirable properties

® can be unreliable




Some Observations

® DL to mitigate geometric ambiguities + limitations
® Useful for

® tacit parts of 3D reconstruction pipeline
weights for robust least squares
initialisation of geometry

principled fusion with geometric estimates




Learning in Vision

® Almost all problems now have DL version

® Datasets play key role in developments

® More (layers) the merrier?

® Massive computational power involved

® Vision tools with high accuracies (deployable)
® What does such “learning” mean?

® Debates on AGI

e Pitfalls: Safety, Privacy, Accuracy, Ethics

® Data+Computational Divide between haves and have-nots
¢ Handful of corporations driving agenda

¢ Environmental impact of deep learning

® Deep Learning will continue to dominate

® Consequences?




