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In this lecture we shall look at image segmentation



Segmentation
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Image Segmentation

® Find groups of pixels (meaningful)
® Why segment ?

® Too many pixels

® Focus on relevant information

® Helps downstream processing
® Related terms:

® segmentation

® grouping

® perceptual organization
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Segmentation

Image Segmentation

® What the basis of this grouping?

® Context dependent

® Ambiguous with multiple interpretations

® General principles based on image primitives alone

® Will not consider motion segmentation

® Consider a few well-known examples

® There are many more methods in the literature

® Conventional approaches to segmentation (this lecture)

® Learning based methods (next lecture)




Segmentation
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Principles ?

® Notion of similarity

® Spatial relationships in images matter
Local+Global both matter (scale)
Global relationship hard to define

See later how learning methods handle it

CS131 Stanford U, 2016 edition



Segmentation
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Grouping Principles

® Gestalt principles
® Translate to algorithms ?

® Why segment is an important question

Forstyth+Ponce 2nd edition; Wikipedia
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Segmentation
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Segmentation

Multiple Segmentations

CSI131 Stanford U, 2016 edition



Segmentation

Segmentation Approaches

® Clustering or grouping features
® Graph based approaches

® Encode desired outcomes into methods




Szeliski 2nd edition draft

Segmentation

(a) (b)

Figure 7.58  Mean-shift image segmentation (Comaniciu and Meer 2002) © 2002 IEEE:
(a) input color image; (b) pixels plotted in L*u*v* space; (c) L*u* space distribution; (d)
clustered results after 159 mean-shift procedures; (e) corresponding trajectories with peaks

marked as red dots.



Segmentation
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Mean-shift algorithm for Gaussian kde:maxima(also minima, saddle points) of p(x) satisfy

Mean Shift

® Estimate density function given samples

(=Y kx—n)=> 6 Ixh;cW

Parzen window method (assume a Gaussian kernel)

htps://faculty. d.edu/mcarreira-perpi ing/ee589/lect tes.pdf




Segmentation

Mean Shift

® Given f(x) can find local maxima
® Too expensive to evaluate f(x) in h-d space
® Solution : find mode of pdf directly

® Start at a random point

® Assume a Gaussian kernel
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Segmentation

m(x) is the mean shift vector



Figure 5.18 Mean-shift color image segmentation with parameters (hg, h,, M) =
(16,19,40) (Comaniciu and Meer 2002) (©) 2002 IEEE.

Figure: Colour image segmentation using mean shift

o Spatial location D= (x,9)
® Colour values : x,

® x; contains both spatial location and colour value

® M specifies size below which clusters are discarded




SPECTRAL CLUSTERING

Powerful linear algebraic approach

Similarity matrix of relationships

Eigen-decomposition of similarity matrix

Well studied and used in vision problems - NCut etc.

® Recent extensions use multiple eigen-vectors that encode
segmentation




SPECTRAL CLUSTERING

Powerful linear algebraic approach

Similarity matrix of relationships
Eigen-decomposition of similarity matrix

Well studied and used in vision problems - NCut etc.

Recent extensions use multiple eigen-vectors that encode
segmentation




SPECTRAL CLUSTERING

Graph Laplacians

Main tool for spectral clustering
Graph Laplacian Matrix: L=D — W
W is undirected weighted graph (w; = w)

D is the degree matrix d; =}, wy




SPECTRAL CLUSTERING

Unnormalized Graph Laplacians
1 o 9
fILf = 3 Z wi(fi — Jj)

=1
® [ is symmetric and positive semi-definite
® Smallest eigen-vector/value are 1 and 0 resp.

® L has z non-negative, real-valued eigenvalues, 0 = A\ < Ag < --- ),

w




SPECTRAL CLUSTERING

Normalized Graph Laplacians

® Two versions in literature
D iLD i =I—-D WD :
DlL=I-D'w

Usually solve generalised eigen-value problem Lu = ADu




SPECTRAL CLUSTERING

Unnormalized spectral clustering

Input: Similarity matriz Sc R™", number k& of clusters to construct
e Construct a similarity graph by one of the ways described in Section 2.
Let W be its weighted adjacency matrix.

s Compute the unnormalized Laplacian L.

¢ Compute the first k eigenvectors vq,..., vy of L.

o Let V € R"™* he the matrix containing the vectors wvy,.... v as columns.

e For + = 1,..., n, let pm; = R* be the vecter corresponding te the i—th row of
V.

e Cluster the points (#)i=1,..« in R* with the k-means algorithm into
clusters Ch..... Ch.

COutput: Clusters Ajy,.... Ay with A, ={jjuy i},




PECTRAL CLUSTERING

Normalized spectral clustering according to Shi and Malik (2000}

Input: Similarity matriz S R"™", number k& of clusters to construct
¢ Construct a similarity graph by one of the ways described in Section 2.
Let W be its weighted adjacency matrix.

e Compute the unnormalized Laplacian L.

« Compute the first k eigenvectors v1, ..., v of the generalized eigenproblem Lv = ADw.

e Let V € R**F he the matrix containing the wvectors wvy,.... v as columns.

e For « = 1,...,n, let z &£ R* be the vector corresponding to the i-th row of
V.

e Cluster the points (w n in RF with the k-means algorithm into
clusters C4,....Ch.

Output: Clusters Ay,.... A with 4 ={j|u; € Ci}.




SPECTRAL CLUSTERING

Similarity Measure

Similarity based on Euclidean Distance
W(l,]) — efﬁ(pjfpi)zv(pjfpi)
o : expected data noise level (control parameter)




SPECTRAL CLUSTERING

Eigen-Decomposition

o W(i,j) = o 27 (=) (8,=p)

® Define D : D(i, i) = 3, W(i, )

® Laplacian matrix: D — W

® Normalised Laplacian : D (D - W)D_%

Fiedler vector : second smallest eigen-vector




Normalized Cuts

A B sum
assoc(A,A) | cut(A,B) | assoc(A,V)
B | cut(B,A) |assoc(B,B) | assoc(B,V)

e

sum | assoc(A,V) | assoc(B,v)

Segmentation using Affinities

® Consider graph of similarity relations G = (V, E)
® In our case V can be image pixels

® E : edges between neighbouring pixels (say)

® Acut

® Deletes some edges
® Separates vertices into two sets
® Results in two segments




Normalized Cuts

Min-cut 1

[ ] Y :
00 q0q® 4

Properties of a Cut

® Cut between two sets of vertices 4 and B
®* AUB=Vand ANB=0
® Cost of cut is the sum of weights of deleted edges

® Can result in degenerate solutions (minimisation)

® Cut isolated vertex




Normalized Cuts

Modify to better reflect desired properties
Replace

cut(A, B) Z Wy

icA,jeEB

with

cut(4, B) cut(4, B)

Ncut(A, B) =
cut(4, B) assoc(A, V) = assoc(B, V)




Normalized Cuts

cut(4, B) cut(4, B)
assoc(A, V) = assoc(B, V)

Neut(4,B) =

where

assoc(A, A) g Wi
i€A4,jEA

assoc(A, V) = assoc(4, A) + cut(4, B)

® assoc(A, A) : association within cluster A
® assoc(A, V) : sum of all weights with vertices in A

® Normalization for relative sizes of 4 and B




Normalized Cuts

cut(A, B) cut(A, B)
assoc(A, V) = assoc(B, V)

Hardness of Cut

® Solving for optimal cut is NP-complete

Ncut(A,B) =

® Can be solved by relaxing labels
® Define indicator x

® =+l <— ic 4

® x,=—-1<= i€eB




Normalized Cuts

Define d = W1
Define D = diag(d)
Lety=(14+x)—b1—x))/2st yd=0

Normalized cuts problem can be redefined

rp_
min Y2~ Wy
y  y'Dy



Normalized Cuts

Cost function solving by minimising Rayleigh quotient
® Equivalent to solving (D — W)y = ADy

Equivalent to (I — N)z = Az

N=D :WD: (Normalized affinity matrix)

® 7z — D%y

Laplacian matrix L=1—N

Spectral Clustering




Normalized Cuts

Issues and Details

® Multiple segmentation carried out recursively
® Can also use multiple eigenvectors to classify

® Weights can capture spatial and image similarity relationships
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® Original method is slow
® Many variations and modifications to speed up
® Modern methods : Discrete optimization on MRF’s

® Neighbourhood need not be local

® L is sparse
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Figure 5.21 Normalized cuts segmentation (Shi and Malik 2000) (¢) 2000 IEEE: The input
image and the components returned by the normalized cuts algorithm.

Original image Our method SWA V1 Normalized cuts Mean-shift

-

Figure 5.22 Comparative segmentation results (Alpert, Galun, Basri er al. 2007) (©) 2007
IEEE. “Our method” refers to the probabilistic bottom-up merging algorithm developed by
Alpert et al.



