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In this lecture we shall look at image segmentation



Segmentation

Image Segmentation

• Find groups of pixels (meaningful)
• Why segment ?

• Too many pixels
• Focus on relevant information
• Helps downstream processing

• Related terms:
• segmentation
• grouping
• perceptual organization

CS131 Stanford U, 2016 edition



Segmentation

Image Segmentation

• What the basis of this grouping?
• Context dependent
• Ambiguous with multiple interpretations
• General principles based on image primitives alone
• Will not consider motion segmentation
• Consider a few well-known examples
• There are many more methods in the literature
• Conventional approaches to segmentation (this lecture)
• Learning based methods (next lecture)



Segmentation

Principles ?

• Notion of similarity
• Spatial relationships in images matter
• Local+Global both matter (scale)
• Global relationship hard to define
• See later how learning methods handle it

CS131 Stanford U, 2016 edition



Segmentation

Grouping Principles

• Gestalt principles
• Translate to algorithms ?
• Why segment is an important question

Forstyth+Ponce 2nd edition; Wikipedia
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Segmentation

Segmentation Approaches

• Clustering or grouping features
• Graph based approaches
• Encode desired outcomes into methods



Segmentation

Szeliski 2nd edition draft



Segmentation

Mean Shift
• Estimate density function given samples

f (x) =
∑
i

k(x − xi) =
∑
i

G

(
‖x − xi‖2

h2

)
Parzen window method (assume a Gaussian kernel)

https://faculty.ucmerced.edu/mcarreira-perpinan/teaching/ee589/lecture-notes.pdf



Segmentation

Mean Shift
• Given f(x) can find local maxima
• Too expensive to evaluate f(x) in h-d space
• Solution : find mode of pdf directly
• Start at a random point
• Assume a Gaussian kernel



Segmentation

f (x) =
1
N

N∑
i=1

K(x − xi)

⇒ ∇f (x) =
1
N

N∑
i=1

∇K(x − xi)

Assume Gaussian kernel

K(x − xi) = G

(∥∥∥∥x − xih

∥∥∥∥2
)

⇒ ∇K(x − xi) = −G
′

(∥∥∥∥x − xih

∥∥∥∥2
)
(xi − x)

Now denote G
′
(∥∥ x−xi

h

∥∥2) = gi



Segmentation

∇f (x) =
1
N

N∑
i=1

gi.(xi − x)

=
1
N

(∑
gixi −

∑
gix
)

=
1
N

(∑
gi
)[∑ gixi∑

gi
− x
]

︸ ︷︷ ︸
m(x)

m(x) is the mean shift vector



Mean Shift

Figure: Colour image segmentation using mean shift

• K (xj) = k
(
||xr ||2
h2r

)
k
(
||xs ||2
h2s

)
• Spatial location : xs = (x, y)
• Colour values : xr
• xj contains both spatial location and colour value
• M specifies size below which clusters are discarded



SPECTRAL CLUSTERING

• Powerful linear algebraic approach
• Similarity matrix of relationships
• Eigen-decomposition of similarity matrix
• Well studied and used in vision problems - NCut etc.
• Recent extensions use multiple eigen-vectors that encode

segmentation



SPECTRAL CLUSTERING

• Powerful linear algebraic approach
• Similarity matrix of relationships
• Eigen-decomposition of similarity matrix
• Well studied and used in vision problems - NCut etc.
• Recent extensions use multiple eigen-vectors that encode

segmentation



SPECTRAL CLUSTERING

Graph Laplacians

• Main tool for spectral clustering
• Graph Laplacian Matrix : L = D −W
• W is undirected weighted graph (wij = wji)
• D is the degree matrix di =

∑
j wij



SPECTRAL CLUSTERING

Unnormalized Graph Laplacians

f TLf =
1
2

n∑
i,j=1

wij(fi − fj)2

• L is symmetric and positive semi-definite
• Smallest eigen-vector/value are 1 and 0 resp.
• L has n non-negative, real-valued eigenvalues, 0 = λ1 ≤ λ2 ≤ · · ·λn



SPECTRAL CLUSTERING

Normalized Graph Laplacians

• Two versions in literature
• D− 1

2LD−
1
2 = I − D− 1

2WD−
1
2

• D−1L = I − D−1W
• Usually solve generalised eigen-value problem Lu = λDu
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SPECTRAL CLUSTERING
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Normalised Fiedler Vector

Similarity Measure

Similarity based on Euclidean Distance

W (i, j) = e−
1

2σ2 (pj−pi)
T (pj−pi)

σ : expected data noise level (control parameter)



SPECTRAL CLUSTERING

Eigen-Decomposition

• W (i, j) = e−
1

2σ2 (pj−pi)
T (pj−pi)

• Define D : D(i, i) =
∑

jW (i, j)
• Laplacian matrix : D −W
• Normalised Laplacian : D−

1
2 (D −W )D−

1
2

• Fiedler vector : second smallest eigen-vector



Normalized Cuts

Segmentation using Affinities

• Consider graph of similarity relations G = (V ,E)
• In our case V can be image pixels
• E : edges between neighbouring pixels (say)
• A cut

• Deletes some edges
• Separates vertices into two sets
• Results in two segments



Normalized Cuts

cut(A,B) =
∑

i∈A,j∈B

wij

Properties of a Cut

• Cut between two sets of vertices A and B
• A ∪ B = V and A ∩ B = ∅
• Cost of cut is the sum of weights of deleted edges
• Can result in degenerate solutions (minimisation)
• Cut isolated vertex



Normalized Cuts

Modify to better reflect desired properties
Replace

cut(A,B) =
∑

i∈A,j∈B

wij

with

Ncut(A,B) =
cut(A,B)
assoc(A,V )

+
cut(A,B)
assoc(B,V )



Normalized Cuts

Ncut(A,B) =
cut(A,B)
assoc(A,V )

+
cut(A,B)
assoc(B,V )

where

assoc(A,A) =
∑

i∈A,j∈A

wij

assoc(A,V ) = assoc(A,A) + cut(A,B)

• assoc(A,A) : association within cluster A
• assoc(A,V ) : sum of all weights with vertices in A
• Normalization for relative sizes of A and B



Normalized Cuts

Ncut(A,B) =
cut(A,B)
assoc(A,V )

+
cut(A,B)
assoc(B,V )

Hardness of Cut
• Solving for optimal cut is NP-complete
• Can be solved by relaxing labels
• Define indicator x
• xi = +1 ⇐⇒ i ∈ A
• xi = −1 ⇐⇒ i ∈ B



Normalized Cuts

• Define d = W1
• Define D = diag(d)
• Let y = ((1+ x)− b(1− x))/2 s.t. y.d = 0
• Normalized cuts problem can be redefined

min
y

yT (D−W)y
yTDy



Normalized Cuts

min
y

yT (D−W)y
yTDy

• Cost function solving by minimising Rayleigh quotient
• Equivalent to solving (D−W)y = λDy
• Equivalent to (I−N)z = λz

• N = D−
1
2WD−

1
2 (Normalized affinity matrix)

• z = D
1
2 y

• Laplacian matrix L = I−N
• Spectral Clustering



Normalized Cuts

Issues and Details
• Multiple segmentation carried out recursively
• Can also use multiple eigenvectors to classify
• Weights can capture spatial and image similarity relationships

wij = exp

(
−
||Fi − Fj ||2

2σ2
F

−
||xi − xj ||2

2σ2
s

)

• Original method is slow
• Many variations and modifications to speed up
• Modern methods : Discrete optimization on MRF’s
• Neighbourhood need not be local
• L is sparse



Normalized Cuts


