E1.216 COMPUTER VISION LECTURE 09: TWO-VIEW OR EPIPOLAR GEOMETRY

Venu Madhav Govindu Department of Electrical Engineering Indian Institute of Science, Bengaluru

2023

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

In this lecture we shall look at ${\bf two-view} \mbox{ or } {\bf epipolar} \mbox{ geometry}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Epipolar geometry is generalisation of classical stereopsis
- Major breakthrough in understanding multiview geometry

In this lecture we shall look at **two-view** or **epipolar** geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Epipolar geometry is generalisation of classical stereopsis
- Major breakthrough in understanding multiview geometry

Geometry of Two Views

- Epipolar geometry is *intrinsic* projective geometry between two views
- Crucial feature : Independent of 3D scene structure
- Depends only on *intrinsic* and *extrinsic* calibration
- Represents a major advancement in geometric understanding

A D F A 目 F A E F A E F A Q Q

• Can be **computed** using matched points (independent of structure)

We shall look at

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- Properties of epipolar geometry
- Implications for calibrated and uncalibrated cameras
- Special motion cases
- Inference of motion from epipolar geometry
- Estimation of epipolar geometry

Fundamental Matrix

If 3-D point X is imaged as x and x' in two images, then there is a 3×3 rank-2 matrix F know as the *fundamental matrix* such that

$$\boldsymbol{x'}^T \boldsymbol{F} \boldsymbol{x} = 0$$

うして ふゆ く は く は く む く し く

We shall look at

- derivations of above *epipolar constraint*
- computation of *fundamental matrix* F

Two types of matrices

- Two epipolar descriptions calibrated and uncalibrated
- Uncalibrated is general form of which calibrated is specialisation
- Historically calibrated epipolar geometry was solved first
- Matrix for calibrated case is known as essential matrix denoted ${m E}$

うして ふゆ く は く は く む く し く

• Relationship is $\boldsymbol{x'}^T \boldsymbol{E} \boldsymbol{x} = 0$

Two types of matrices

- We shall develop the epipolar relationship in different ways
- **F** has 7 degrees of freedom
 - 3×3 matrix has 9 degrees of freedom
 - minus 1 for overall scale factor
 - minus 1 for constraint $|\mathbf{F}| = 0$
- **E** has 5 degrees of freedom
 - Calibrated case
 - Rotation and translation are 6 degrees of freedom
 - minus 1 for overall scale factor
- Brief foray into calibrated case, then develop general form

うして ふゆ く は く は く む く し く

• Will then return to calibrated case

Consider the calibrated case Wlog we can attach frame of reference to first frame Note we can only compute *relative* motion between two frames For 3-D point $\boldsymbol{P} = [\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}]^T$, in projective sense

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Now let us rotate the camera by R and translate by T 3-D point in new co-ordinate system has position

$$oldsymbol{P}^{'} = oldsymbol{R} \left[egin{array}{c} oldsymbol{X} \ oldsymbol{Y} \ oldsymbol{Z} \end{array}
ight] + \left[egin{array}{c} t_X \ t_Y \ t_Z \end{array}
ight]$$

Projectively, the image co-ordinates in the second image is given by

$$egin{array}{rcl} m{x}^{'} &=& \lambda m{P}^{'} \ &=& \lambda m{R} \left[egin{array}{c} m{X} \ m{Y} \ m{Z} \end{array}
ight] + \lambda m{T} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We further develop this relationship

We have

$$oldsymbol{x}^{'} = \lambda oldsymbol{Z} oldsymbol{R} oldsymbol{x} + \lambda oldsymbol{T}$$

Now taking cross-product with T on either side we eliminate T term on rhs

$$oldsymbol{T} imes oldsymbol{x}^{'} = oldsymbol{T} imes \lambda oldsymbol{Z} oldsymbol{R} oldsymbol{x}$$

(ロト (個) (E) (E) (E) (O)

Given

$$oldsymbol{T} imes oldsymbol{x}^{'} = oldsymbol{T} imes \lambda oldsymbol{Z} oldsymbol{R} oldsymbol{x}$$

obviously the following dot-product relationship is true

$$\boldsymbol{x'}^{T}\boldsymbol{T} \times \boldsymbol{x'} = \boldsymbol{x'}^{T}\boldsymbol{T} \times \lambda \boldsymbol{Z}\boldsymbol{R}\boldsymbol{x} = 0$$

Note that $\boldsymbol{a} \times \boldsymbol{b}$ can be written as

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

- Represent cross-product in Ax form
- $[.]_{\times}$ is a *skew-symmetric* matrix

Given this we now have the relationship for epipolar geometry

$$\mathbf{x}^{'^{T}}[\mathbf{T}]_{\times}\mathbf{R}\mathbf{x} = 0$$

 $\Rightarrow \mathbf{x}^{'^{T}}\mathbf{E}\mathbf{x} = 0$

Essential matrix \boldsymbol{E} has form

$$oldsymbol{E} = \left[oldsymbol{T}
ight]_{ imes}oldsymbol{R}$$

- Note the relationship is *independent* of structure
- This was an algebraic derivation
- Now we consider the problem geometrically

What kind of geometric relations obtain ?

- 3-D point \boldsymbol{X} , image points \boldsymbol{x} and \boldsymbol{x}' are coplanar
- Ray connecting X and x intersects second image in line
- As seen earlier, search space is now a line
- Corresponding epipolar lines for points \boldsymbol{x} and \boldsymbol{x}' in other image
- \boldsymbol{C} and \boldsymbol{C}' are two camera centres
- $m{C}$ and $m{C}^{'}$ always contained in π
- Line connecting two centres is called **baseline**
- Nomenclature of **baseline** is from stereo setting

Epipole

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Point of intersection of baseline with image plane
- Denoted e and e' respectively
- Equivalently image of other camera centre on image plane

Epipolar Plane

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Plane containing baseline
- One parameter family (pencil) of epipolar planes
- Each plane allows for *transfer* of points

Epipolar Line

- Intersection of epipolar plane with image plane
- All epipolar lines intersect at epipole (why ?)
- Each line defines matching search space in image plane
- Generalisation from earlier *stereo* setting

Fundamental Matrix F

- $\forall x \exists l'$ in other image
- Correspondence \boldsymbol{x}' must lie on \boldsymbol{l}'
- Epipolar line is projection in second image of ray from x through C
- This is a mapping $x \mapsto l'$
- Mapping is mediated through the fundamental matrix

Geometric Derivation

- Consider plane π not containing either camera centre
- Ray through x and C meets π in X
- \boldsymbol{X} gets projected to \boldsymbol{x}' in second image
- Transfer via plane π
- Since \boldsymbol{X} is on ray through $\boldsymbol{x}, \, \boldsymbol{x}'$ must lie on \boldsymbol{l}'
- $\boldsymbol{x}, \boldsymbol{x}^{'}$ and \boldsymbol{X} all lie on plane

Geometric Derivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\boldsymbol{x}, \boldsymbol{x}^{'}$ and \boldsymbol{X} all lie on plane
- Set of \boldsymbol{x}_i and corresponding $\boldsymbol{x}_i^{'}$ are projectively equivalent
- This is true because all X_i lie on π
- $\therefore \exists H_{\pi}$ mapping each \boldsymbol{x}_{i} to $\boldsymbol{x}_{i}^{'}$

Constructing the epipolar line

• Epipolar line $l^{'}$ passes through $x^{'}$ and $e^{'}$

•
$$\bm{l}^{'} = \bm{e}^{'} imes \bm{x}^{'} = \left[\bm{e}^{'}
ight]_{ imes} \bm{x}^{'}$$

• Also
$$\boldsymbol{x}' = H_{\pi} \boldsymbol{x}$$

Constructing the epipolar line

• Epipolar line $l^{'}$ passes through $x^{'}$ and $e^{'}$

•
$$\boldsymbol{l}^{'} = \boldsymbol{e}^{'} \times \boldsymbol{x}^{'} = \begin{bmatrix} \boldsymbol{e}^{'} \end{bmatrix}_{\times} \boldsymbol{x}^{'}$$

• Also $\boldsymbol{x}' = H_{\pi} \boldsymbol{x}$ therefore, the epipolar line is described by

$$oldsymbol{l}^{'}=\left[oldsymbol{e}^{'}
ight]_{ imes}H_{\pi}oldsymbol{x}=oldsymbol{F}oldsymbol{x}$$

 ${\pmb F}$ is known as the fundamental matrix

イロト イヨト イヨト イヨト

The fundamental matrix \mathbf{F} may be written as $\mathbf{F} = \begin{bmatrix} \mathbf{e}' \end{bmatrix}_{\times} H_{\pi}$, where H_{π} is the transfer mapping from one image to another via any plane π . Furthermore, since $\begin{bmatrix} \mathbf{e}' \end{bmatrix}_{\times}$ has rank 2 and H_{π} rank 3, \mathbf{F} is a matrix of rank 2

(日)

Sac

Geometric interpretation

• F represents mapping from 2-D projective plane \mathbb{P}^2 of first image to pencil of epipolar lines through epipole $e^{'}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Mapping from 2-D onto 1-D projective space
- Must have rank 2
- Plane π is *virtual*, i.e. only conceptual

We can also derive this relationship via the camera projection matrices

Consider the projection equation PX = x and now consider the back-projection from x in given image

Since back-projection is through camera centre, we have

$$\boldsymbol{X}(\lambda) = P^{\dagger}\boldsymbol{x} + \lambda \boldsymbol{C}$$

- P^{\dagger} is pseudo-inverse of P, i.e. $P^{\dagger}P = I$
- C is null-vector, i.e. camera centre satisfies PC = 0
- Consider $\lambda = 0$ and $\lambda = \infty$
- Corresponding points are $P^{\dagger} \boldsymbol{x}$ and \boldsymbol{C}
- Their projections onto second image are $P'P^{\dagger}x$ and P'C
- Epipolar line in second image is $\boldsymbol{l}^{'} = (\boldsymbol{P}^{'}\boldsymbol{C}) \times (\boldsymbol{P}^{'}\boldsymbol{P}^{\dagger}\boldsymbol{x})$
- P'C is epipole in second image e'
- Results in relationship

$$\boldsymbol{l}' = \left[\boldsymbol{e}'\right]_{\times} (\boldsymbol{P}' \boldsymbol{P}^{\dagger}) \boldsymbol{x} = \boldsymbol{F} \boldsymbol{x}$$

- Epipolar line in second image is $\boldsymbol{l}^{'} = (\boldsymbol{P}^{'}\boldsymbol{C}) \times (\boldsymbol{P}^{'}\boldsymbol{P}^{\dagger}\boldsymbol{x})$
- P'C is epipole in second image e'
- Results in relationship

$$\boldsymbol{l}^{'} = \left[\boldsymbol{e}^{'}
ight]_{ imes} (P^{'}P^{\dagger})\boldsymbol{x} = \boldsymbol{F}\boldsymbol{x}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$F = \left[\boldsymbol{e}' \right]_{\times} (P' P^{\dagger})$$

- H_{π} now has an explicit form, i.e. $H_{\pi} = P' P^{\dagger}$
- Derivation only works for different camera centres

Consider the two image scenario where projection matrices are

$$P = K[I|\mathbf{0}] \quad P' = K'[\mathbf{R}|\mathbf{t}]$$

$$\Rightarrow P^{\dagger} = \begin{bmatrix} K^{-1} \\ \mathbf{0}^{T} \end{bmatrix} \quad \mathbf{C} = \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix}$$

$$\Rightarrow F = \begin{bmatrix} P'\mathbf{C} \end{bmatrix}_{\times} P'P^{\dagger}$$

$$= \begin{bmatrix} K'\mathbf{t} \end{bmatrix}_{\times} K'\mathbf{R}K^{-1} = \underline{K'^{-T}[\mathbf{t}]_{\times}\mathbf{R}K^{-1}}$$

$$= K'^{-T}\mathbf{R}[\mathbf{R}\mathbf{t}]_{\times}K^{-1} = K'^{-T}\mathbf{R}K^{T}[K\mathbf{R}^{T}\mathbf{t}]_{\times}$$

Where are the epipoles ?

$$e = P\begin{pmatrix} -\mathbf{R}^{T}\mathbf{t} \\ 1 \end{pmatrix} = K\mathbf{R}^{T}\mathbf{t}$$
$$e' = P'\begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix} = K'\mathbf{t}$$

Also, the most useful form of \boldsymbol{F} is

$$\boldsymbol{F} = {K'}^{-T} [\boldsymbol{t}]_{\times} \boldsymbol{R} K^{-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

Consider the representation of the fundamental matrix

$$F = K'^{-T} [t]_{\times} R K^{-1}$$
$$\Rightarrow \mathbf{x}'^{T} F \mathbf{x} = 0$$
$$\Rightarrow \mathbf{x}'^{T} K'^{-T} [t]_{\times} R K^{-1} \mathbf{x} = 0$$

This can be interpreted as

$$\underbrace{\boldsymbol{x}^{'^{T}}\boldsymbol{K}^{'^{-T}}}_{\boldsymbol{x}}[\boldsymbol{t}]_{\times}\boldsymbol{R}\,\overbrace{\boldsymbol{K}^{-1}\boldsymbol{x}}^{\boldsymbol{x}}=0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

- Terms denoted are the calibrated image points
- Central term is the *essential matrix*

$$\boldsymbol{x}^{'^{T}}\boldsymbol{F}\boldsymbol{x}=0$$

Properties : Transpose

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• F for pair (P, P') implies F^T for (P', P)

$$\boldsymbol{x}^{'^{T}}\boldsymbol{F}\boldsymbol{x}=0$$

Properties : Epipolar Lines

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ のへで

- For \boldsymbol{x} corresponding epipolar line is $\boldsymbol{l}' = \boldsymbol{F} \boldsymbol{x}$
- For \boldsymbol{x}' corresponding epipolar line is $\boldsymbol{l} = \boldsymbol{F}^T \boldsymbol{x}'$
- Further for corresponding epipolar lines \boldsymbol{l} and \boldsymbol{l}' $\boldsymbol{l}' = \boldsymbol{F}[\boldsymbol{e}]_{\times}\boldsymbol{l}; \quad \boldsymbol{l} = \boldsymbol{F}^T \left[\boldsymbol{e}'\right]_{\times} \boldsymbol{l}'$

$$\boldsymbol{x}^{'^{T}}\boldsymbol{F}\boldsymbol{x}=0$$

Properties : Epipoles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Any point \boldsymbol{x} other than $\boldsymbol{e},\,\boldsymbol{l}^{'}=\boldsymbol{F}\boldsymbol{x}$ contains $\boldsymbol{e}^{'}$
- Implies $\boldsymbol{e'}^T \boldsymbol{F} \boldsymbol{x} = (\boldsymbol{e'}^T \boldsymbol{F}) \boldsymbol{x} = 0, \forall \boldsymbol{x}$
- $\therefore e^{'^{T}} F = 0, \forall x, \text{ i.e. } e^{'} \text{ is left null-vector of } F$
- Similarly, Fe = 0

Special Motions : Pure Translation

- Consider pure translation t
- Points in 3-D move on lines parallel to t
- Image intersection of these parallel lines is the vanishing point \boldsymbol{v}
- \boldsymbol{v} in the direction of \boldsymbol{t}
- **v** is the epipole of both views
- Imaged parallel lines are epipolar lines

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のQ@

Special Motions : Pure Translation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Assuming camera parameters do not change

•
$$P = K[I|0]; P' = K[I|t]$$

•
$$\therefore \boldsymbol{F} = \left[\boldsymbol{e}^{'} \right]_{\times} \boldsymbol{K} \boldsymbol{K}^{-1} = \left[\boldsymbol{e}^{'} \right]_{\times}$$

• Ideal rectified stereo is a special case of this

Figure 6.10. Illustration of the stratified approach: projective structure X_p , affine structure X_a , and Euclidean structure X_e obtained in different stages of reconstruction.

Projective Ambiguity

・ロト ・ 四ト ・ 日ト ・ 日

- Camera pairs $(P,P^{'})$ and $(PH,P^{'}H)$ are equivalent
- H is a 4×4 projective transformation
- Recovery of camera pairs given F matrix
- Notice that $PX = (PH)(H^{-1}X)$
- Basic asymmetry :
 - Camera pairs determine F uniquely
 - F does not do that for camera pairs
 - Ambiguity of "projective basis"

Canonical Form of Projective Matrices

A D F A 目 F A E F A E F A Q Q

- Given above projective ambiguity, need to fix it
- Note that we always only measure "relative" motion
- Fix reference frame to first image, i.e. P = [I|0]
- Consequently $P' = [\boldsymbol{M}|\boldsymbol{m}]$
- Here $\boldsymbol{F} = \left[\boldsymbol{m}\right]_{\times} \boldsymbol{M}$

Now we **specialise** to the *essential matrix*, i.e. calibrated cameras

Normalised coordinates

A D F A 目 F A E F A E F A Q Q

- Let $P = \mathbf{K} [\mathbf{R}|\mathbf{t}]$
- Assume we know or can estimate K
- Can apply K^{-1} to image coordinates x
- Normalised coordinates $\hat{\boldsymbol{x}} = \boldsymbol{K}^{-1} \boldsymbol{x}$
- $\hat{m{x}} = [m{R}|m{t}] m{X}$

Consider camera pairs
$$P = [I|0]$$
 and $P' = [R|t]$
Essential matrix is given by

$$oldsymbol{E} = \left[oldsymbol{t}
ight]_{ imes} oldsymbol{R} = oldsymbol{R} \left[oldsymbol{R}^T oldsymbol{t}
ight]_{ imes} \ \hat{oldsymbol{x}}^{'T} oldsymbol{E} \hat{oldsymbol{x}} = oldsymbol{0}$$

As shown earlier, we have

$$\boldsymbol{E} = {\boldsymbol{K}'}^T \boldsymbol{F} \boldsymbol{K}$$

(ロト (個) (E) (E) (E) (O)

Essential Matrix properties

- Has fewer degrees of freedom than the fundamental matrix
- Defined by rotation and translation, i.e. six degrees of freedom
- However there's an overall scale ambiguity
- The essential matrix has 5 degrees of freedom
- Implies a translation scale ambiguity
- We can only solve for heading direction and not actual translation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A 3×3 matrix is an essential matrix if and only if two if its singular values are equal, and the third is zero

Essential Matrix properties

うして ふゆ く は く は く む く し く

- Rank-2 constraint implies third singular value is zero
- Canonical form is singular values of (1, 1, 0)
- Alternate form: $(\boldsymbol{E}\boldsymbol{E}^T)\boldsymbol{E} \frac{1}{2}tr(\boldsymbol{E}\boldsymbol{E}^T)\boldsymbol{E} = \boldsymbol{0}$

Proof Consider the decomposition $\boldsymbol{E} = \left[\boldsymbol{t}\right]_{\times} \boldsymbol{R} = \boldsymbol{S} \boldsymbol{R}$

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- W is orthogonal
- Z is skew-symmetric
- Skew-symmetric \boldsymbol{S} can always be written as $\boldsymbol{S} = k \boldsymbol{U} \boldsymbol{Z} \boldsymbol{U}^T$
- U is orthogonal
- Z = diag(1,1,0)W upto scale
- Implies $\boldsymbol{S} = \boldsymbol{U} diag(1, 1, 0) \boldsymbol{W} \boldsymbol{U}^T$
- $\boldsymbol{E} = \boldsymbol{S}\boldsymbol{R} = \boldsymbol{U}diag(1, 1, 0)\boldsymbol{W}\boldsymbol{U}^T\boldsymbol{R}$
- Above is a singular value decomposition of \boldsymbol{E} (Q.E.D.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Decomposing Essential Matrix

- SVD of \boldsymbol{E} is $\boldsymbol{U} \operatorname{diag}(1,1,0) \boldsymbol{V}^T$
- Ignoring signs, there are two factorisations
 - $\boldsymbol{S} = \boldsymbol{U} \boldsymbol{Z} \boldsymbol{U}^T$ and $\boldsymbol{R} = \boldsymbol{U} \boldsymbol{W} \boldsymbol{V}^T$
 - $S = UZU^T$ and $R = UW^TV^T$
- t is (upto scale) the last column of U
- Sign of **t** is ambiguous
- Results in 4 possible decomposition pairs
- Need to verify *depth positivity* of one point to disambiguate

うして ふゆ く は く は く む く し く

• Depth positivity will give an unambiguous solution

We now shift gears and consider computation of the Fundamental Matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

$$\boldsymbol{x}^{'^{T}}\boldsymbol{F}\boldsymbol{x}=0$$

Linear Estimation of \boldsymbol{F}

- Above equation can solve for \boldsymbol{F} given enough $(\boldsymbol{x}, \boldsymbol{x}')$ pairs
- A minimum of 7 matched points are required
- Denote $\boldsymbol{x} = (x, y, 1)^T$ and $\boldsymbol{x}^{'} = (x^{'}, y^{'}, 1)^T$
- Can write the *bilinear form* as linear equation in entries of F

うして ふゆ く は く は く む く し く

$$\begin{aligned} \mathbf{x}^{'^{T}} \mathbf{F} \mathbf{x} &= 0 \\ \Rightarrow \begin{bmatrix} x^{'} & y^{'} & 1 \end{bmatrix} \begin{bmatrix} f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} &= 0 \\ \Rightarrow \begin{pmatrix} x^{'} x & x^{'} y & x^{'} & y^{'} x & y^{'} y & y^{'} & x & y & 1 \end{pmatrix} \mathbf{f} &= 0 \\ \Rightarrow \begin{pmatrix} \mathbf{x}^{'} \otimes \mathbf{x} \end{pmatrix}^{T} \mathbf{f} &= 0 \end{aligned}$$

(ロト (個) (E) (E) (E) (O)

$$\boldsymbol{A}\boldsymbol{f} = \begin{bmatrix} x'_{1}x_{1} & x'_{1}y_{1} & x'_{1} & y'_{1}x_{1} & y'_{1}y_{1} & y'_{1} & x_{1} & y_{1} & 1\\ \vdots & \vdots\\ x'_{n}x_{n} & x'_{n}y_{n} & x'_{n} & y'_{n}x_{n} & y'_{n}y_{n} & y'_{n} & x_{n} & y_{n} & 1 \end{bmatrix} \boldsymbol{f} = 0$$

Eight-Point Algorithm

・ロット (雪) (山) (山)

э

Sac

- Homogeneous set of equations
- f determined only upto scale
- For solution, **A** must be of rank at most 8
- For rank = 8, solution is exact (upto scale)
- Solution is the right null-space of A
- Solved using SVD
- Very popular and useful algorithm

$$\boldsymbol{A}\boldsymbol{f} = \begin{bmatrix} x'_{1}x_{1} & x'_{1}y_{1} & x'_{1} & y'_{1}x_{1} & y'_{1}y_{1} & y'_{1} & x_{1} & y_{1} & 1\\ \vdots & \vdots\\ x'_{n}x_{n} & x'_{n}y_{n} & x'_{n} & y'_{n}x_{n} & y'_{n}y_{n} & y'_{n} & x_{n} & y_{n} & 1 \end{bmatrix} \boldsymbol{f} = 0$$

Eight-Point Algorithm

A D F A 目 F A E F A E F A Q Q

- When data is noisy, **A** is full rank
- Use A to find least squares solution
- Lsq solution is smallest right-singular vector of \boldsymbol{A}
- Equivalent to minimising algebraic error ||Af||

Linear Estimation

- **F** is a rank-2 matrix
- Rank constraint not enforced for linear estimate
- Leads to violation of the epipolar geometry properties
- Need to enforce the rank-2 constraint on ${m F}$

Enforcing rank-2 constraint

Sac

- Project **F** to closest rank-2 matrix, say **F**
- Distance is the Frobenius norm $||F F^{'}||$
- Minimise Frobenius distance using SVD
- Let $\boldsymbol{F} = \boldsymbol{U} diag(r, s, t) \boldsymbol{V}^T$
- Set t = 0, i.e. $\boldsymbol{F}' = \boldsymbol{U} diag(r, s, 0) \boldsymbol{V}^T$
- Need to enforce the rank-2 constraint on ${m F}$
- This is guaranteed to minimise required measure

10									
1	250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81	1.00
]	2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79	1.00
1	416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	1.00
	191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65	1.00
]	48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15	1.00
1	164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14	1.00
1	116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64	1.00
1	135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48	1.00

Typical \boldsymbol{A} matrix

Normalised Eight Point Algorithm

- Original 8-pt algorithm due to Longuet-Higgins (1981)
- Need to take special care when data is noisy
- Note the linear row-term of $oldsymbol{A}$ is $oldsymbol{\left(x^{'}\otimes x
 ight)}^{T}$
- Each term in kronecker product is of different scale
- Noise is scaled differently in each term

Table taken from slides of Marc Pollefeys

Normalised Eight Point Algorithm

- Original 8-pt algorithm due to Longuet-Higgins (1981)
- Need to take special care when data is noisy
- Note the linear row-term of $oldsymbol{A}$ is $oldsymbol{\left(x^{'}\otimes x
 ight)}^{T}$
- Each term in kronecker product is of different scale
- Noise is scaled differently in each term
- Linear Algebra view : Poorly conditioned computation
- Statistical Estimation view : Non-white covariance of noise (data dependent)

- Need to scale computation (i.e. whiten) to make it useful
- Hartley's paper : "In Defence of the Eight-Point Algorithm"

Normalised Eight Point Algorithm

- Need to scale data appropriate to improve conditioning
- Transformed data should be close to "whitened" data
- Done by translating and scaling
- Translation : Remove centroid of data
- Scaling : Make RMS distance from origin equal to $\sqrt{2}$
- Apply transforms T and $T^{'}$ to sets x and $x^{'}$
- Compute linear estimate of fundamental matrix ${\pmb F}$
- Enforce rank-2 constraint
- Map back to image co-ordinate by putting back T and $T^{'}$

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}$, determine the fundamental matrix F such that $\mathbf{x}'_i^{\mathsf{T}} \mathbf{F} \mathbf{x}_i = 0$.

Algorithm

- (i) Normalization: Transform the image coordinates according to x̂_i = Tx_i and x̂_i' = T'x_i', where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix \hat{F}' corresponding to the matches $\hat{x}_i \leftrightarrow \hat{x}'_i$ by
 - (a) Linear solution: Determine F̂ from the singular vector corresponding to the smallest singular value of Â, where is composed from the matches x̂_i ↔ x̂'_i as defined in (11.3).
 - (b) Constraint enforcement: Replace F by F' such that det F' = 0 using the SVD (see section 11.1.1).

うして ふゆ く は く は く む く し く

(iii) Denormalization: Set F = T'^TF'T. Matrix F is the fundamental matrix corresponding to the original data x_i ↔ x'_i.

Algorithm 11.1. The normalized 8-point algorithm for F.

Estimation

- Normalised Eight Point algorithm works well, but not optimal
- Optimal estimate would require direct enforcement of rank-2 constraint
- Results in non-linear iterative minimisation of algebraic error $||\pmb{A}\pmb{f}||$
- Algebraic error does not have real geometric significance
- Can define geometric error terms and minimise non-linearly
- Geometric error term will be measurable in the image plane

A D F A 目 F A E F A E F A Q Q

Seven Point Algorithm

- Fundamental matrix F has seven degrees of freedom
- Each point correspondence pair provides one constraint
- Hence should be able to solve for F using seven points
- Null space is now two-dimensional, say spanned by F_1 an F_2
- Rank constraint is $|\boldsymbol{F}_1 + \lambda \boldsymbol{F}_2| = 0$
- Cubic equation in λ , solve analytically
- Either one or three real solutions
- May need extra points for verification
- Estimation: Use same SVD approach as for 8-point algorithm

うして ふぼう ふほう ふほう うらつ

Minimise

$$\sum_{i} d(\boldsymbol{x}_{i}, \hat{\boldsymbol{x}}_{i})^{2} + d(\boldsymbol{x}_{i}^{'}, \hat{\boldsymbol{x}}_{i}^{'})^{2}$$

Geometric Error Minimisation

- $oldsymbol{x}_i \leftrightarrow oldsymbol{x}_i^{'}$ are measured correspondences
- $\hat{x_i}$ and $\hat{x_i}'$ are "true" matches satisfying epipolar constraints
- Assume camera matrices P = [I|0] and P' = [M|t]
- Vary P' and \boldsymbol{X}_i and measure above "reprojection" error
- After minimisation, compute $\boldsymbol{F} = [\boldsymbol{t}]_{\times} M$
- Note that rank-2 constraint is automatically enforced here
- This is the optimal "Gold Standard" solution
- Non-linear optimisation is expensive and needs good initialisation
- Cost substantially reduced using sparse Levenberg-Marquardt

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}$, determine the Maximum Likelihood estimate $\hat{\mathbf{F}}$ of the fundamental matrix.

The MLE involves also solving for a set of subsidiary point correspondences $\{\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}'_i\}$, such that $\hat{\mathbf{x}}'_i^T \hat{\mathbf{F}} \hat{\mathbf{x}}_i = 0$, and which minimizes

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2}.$$

Algorithm

- (i) Compute an initial rank 2 estimate of \hat{F} using a linear algorithm such as algorithm 11.1.
- (ii) Compute an initial estimate of the subsidiary variables $\{\hat{\mathbf{x}}_i, \hat{\mathbf{x}}'_i\}$ as follows:
 - (a) Choose camera matrices $P = [I \mid 0]$ and $F' = [[e']_{\times}\hat{F} \mid e']$, where e' is obtained from \hat{F} .
 - (b) From the correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ and $\hat{\mathbf{F}}$ determine an estimate of $\hat{\mathbf{X}}_i$ using the triangulation method of chapter 12.

(c) The correspondence consistent with \hat{F} is obtained as $\hat{\mathbf{x}}_i = P \widehat{\mathbf{X}}_i$, $\hat{\mathbf{x}}'_i = P' \widehat{\mathbf{X}}_i$.

(iii) Minimize the cost

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2}$$

over $\hat{\mathbf{F}}$ and $\hat{\mathbf{X}}_i$, $i = 1, \dots, n$. The cost is minimized using the Levenberg–Marquardt algorithm over 3n + 12 variables: 3n for the n 3D points $\hat{\mathbf{X}}_i$, and 12 for the camera matrix $\mathbf{P}' = [\mathbf{M} \mid \mathbf{t}]$, with $\hat{\mathbf{F}} = [\mathbf{t}]_{\times} \mathbf{M}$, and $\hat{\mathbf{x}}_i = \mathbf{P} \hat{\mathbf{X}}_i$, $\hat{\mathbf{x}}'_i = \mathbf{P}' \hat{\mathbf{X}}_i$.

Algorithm 11.3. The Gold Standard algorithm for estimating F from image correspondences.

3

Automatic Computation of F

- Input is only two images
- Compute interest points
- Match points across two images using local neighbourhood
- Run **RANSAC** robust estimator for removing outliers
- Estimate F matrix using inliers and improve using *non-linear* estimate
- Use estimate of **F** to **guide matching** by search in a band around epipolar lines
- Iterate till the number of correspondences obtained is stable

うして ふゆ く は く は く む く し く

Left and right images

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 N

596

Detected Corners

• • • • • • • •

596

Putative matches that have many wrong ones!

Sac

イロト イヨト イヨト イ

Inliers and final set of matches (including a few wrong ones)

・ロト ・四ト ・モト ・モト

ъ