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In this lecture we shall look at two-view or epipolar geometry

• Epipolar geometry is generalisation of classical stereopsis

• Major breakthrough in understanding multiview geometry
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Epipolar Geometry

Geometry of Two Views

• Epipolar geometry is intrinsic projective geometry between two
views

• Crucial feature : Independent of 3D scene structure

• Depends only on intrinsic and extrinsic calibration

• Represents a major advancement in geometric understanding

• Can be computed using matched points (independent of
structure)



Epipolar Geometry

We shall look at

• Properties of epipolar geometry

• Implications for calibrated and uncalibrated cameras

• Special motion cases

• Inference of motion from epipolar geometry

• Estimation of epipolar geometry



Epipolar Geometry

Fundamental Matrix

If 3-D point X is imaged as x and x
′

in two images, then there is a
3× 3 rank-2 matrix F know as the fundamental matrix such that

x
′T
Fx = 0

We shall look at

• derivations of above epipolar constraint

• computation of fundamental matrix F



Epipolar Geometry

Two types of matrices

• Two epipolar descriptions - calibrated and uncalibrated

• Uncalibrated is general form of which calibrated is specialisation

• Historically calibrated epipolar geometry was solved first

• Matrix for calibrated case is known as essential matrix denoted E

• Relationship is x
′T
Ex = 0



Epipolar Geometry

Two types of matrices

• We shall develop the epipolar relationship in different ways

• F has 7 degrees of freedom
• 3× 3 matrix has 9 degrees of freedom
• minus 1 for overall scale factor
• minus 1 for constraint |F | = 0

• E has 5 degrees of freedom
• Calibrated case
• Rotation and translation are 6 degrees of freedom
• minus 1 for overall scale factor

• Brief foray into calibrated case, then develop general form

• Will then return to calibrated case



Epipolar Geometry

Consider the calibrated case
Wlog we can attach frame of reference to first frame
Note we can only compute relative motion between two frames
For 3-D point P = [X,Y ,Z]

T
, in projective sense

x =

 u
v
1

 =
1

Z

 X
Y
Z


⇒ x = P



Epipolar Geometry

Now let us rotate the camera by R and translate by T
3-D point in new co-ordinate system has position

P
′

= R

 X
Y
Z

+

 tX
tY
tZ


Projectively, the image co-ordinates in the second image is given by

x
′

= λP
′

= λR

 X
Y
Z

+ λT



Epipolar Geometry

We further develop this relationship

x
′

= λP
′

= λR

 X
Y
Z

+ λT

= λZRx + λT



Epipolar Geometry

We have

x
′

= λZRx + λT

Now taking cross-product with T on either side we eliminate T term
on rhs

T × x
′

= T × λZRx



Epipolar Geometry

Given

T × x
′

= T × λZRx

obviously the following dot-product relationship is true

x
′T
T × x

′
= x

′T
T × λZRx = 0



Epipolar Geometry

Note that a× b can be written as

a× b =
[
a2b3 − a3b2 a3b1 − a1b3 a1b2 − a2b1

]
=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 b1
b2
b3


= [a]×b

• Represent cross-product in Ax form

• [.]× is a skew-symmetric matrix



Epipolar Geometry

Given this we now have the relationship for
epipolar geometry

x
′T

[T ]×Rx = 0

⇒ x
′T
Ex = 0

Essential matrix E has form

E = [T ]×R

• Note the relationship is independent of structure

• This was an algebraic derivation

• Now we consider the problem geometrically



Epipolar Geometry

C C /

 π

x x

X

epipolar plane  

/

x

e

X ?

X

X ?

l

e

epipolar line
for x

/

/

What kind of geometric relations obtain ?

• 3-D point X, image points x and x
′

are coplanar

• Ray connecting X and x intersects second image in line

• As seen earlier, search space is now a line

• Corresponding epipolar lines for points x and x
′

in other image

• C and C
′

are two camera centres

• C and C
′

always contained in π

• Line connecting two centres is called baseline

• Nomenclature of baseline is from stereo setting



Epipolar Geometry

l
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Epipole

• Point of intersection of baseline with image plane

• Denoted e and e
′

respectively

• Equivalently image of other camera centre on image plane



Epipolar Geometry
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Epipolar Plane

• Plane containing baseline

• One parameter family (pencil) of epipolar planes

• Each plane allows for transfer of points



Epipolar Geometry
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Epipolar Line

• Intersection of epipolar plane with image plane

• All epipolar lines intersect at epipole (why ?)

• Each line defines matching search space in image plane

• Generalisation from earlier stereo setting



Epipolar Geometry
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Fundamental Matrix F

• ∀x ∃ l
′

in other image

• Correspondence x
′

must lie on l
′

• Epipolar line is projection in second image of ray from x through
C

• This is a mapping x 7→ l
′

• Mapping is mediated through the fundamental matrix



Epipolar Geometry

e /e

Epipolar Geometry for converging cameras



Epipolar Geometry
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Geometric Derivation

• Consider plane π not containing either camera centre

• Ray through x and C meets π in X

• X gets projected to x
′

in second image

• Transfer via plane π

• Since X is on ray through x, x
′

must lie on l
′

• x,x
′

and X all lie on plane



Epipolar Geometry
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Geometric Derivation

• x,x
′

and X all lie on plane

• Set of xi and corresponding x
′

i are projectively equivalent

• This is true because all Xi lie on π

• ∴ ∃Hπ mapping each xi to x
′

i



Epipolar Geometry
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Constructing the epipolar line

• Epipolar line l
′

passes through x
′

and e
′

• l
′

= e
′ × x

′
=
[
e

′
]
×
x

′

• Also x
′

= Hπx



Epipolar Geometry

/e e

l
x

/

H

X

/xπ

π

Constructing the epipolar line

• Epipolar line l
′

passes through x
′

and e
′

• l
′

= e
′ × x

′
=
[
e

′
]
×
x

′

• Also x
′

= Hπx therefore, the epipolar line is described by

l
′

=
[
e

′
]
×
Hπx = Fx

F is known as the fundamental matrix



Epipolar Geometry

/e e
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The fundamental matrix F may be written as F =
[
e

′
]
×
Hπ, where

Hπ is the transfer mapping from one image to another via any plane

π. Furthermore, since
[
e

′
]
×

has rank 2 and Hπ rank 3, F is a matrix

of rank 2



Epipolar Geometry

Geometric interpretation

• F represents mapping from 2-D projective plane P2 of first image
to pencil of epipolar lines through epipole e

′

• Mapping from 2-D onto 1-D projective space

• Must have rank 2

• Plane π is virtual, i.e. only conceptual



Epipolar Geometry

We can also derive this relationship via the camera projection
matrices
Consider the projection equation PX = x and now consider the
back-projection from x in given image
Since back-projection is through camera centre, we have

X(λ) = P †x + λC

• P † is pseudo-inverse of P, i.e. P †P = I
• C is null-vector, i.e. camera centre satisfies PC = 0
• Consider λ = 0 and λ =∞
• Corresponding points are P †x and C
• Their projections onto second image are P

′
P †x and P

′
C

• Epipolar line in second image is l
′

= (P
′
C)× (P

′
P †x)

• P ′
C is epipole in second image e

′

• Results in relationship

l
′

=
[
e

′
]
×

(P
′
P †)x = Fx



Epipolar Geometry

• Epipolar line in second image is l
′

= (P
′
C)× (P

′
P †x)

• P ′
C is epipole in second image e

′

• Results in relationship

l
′

=
[
e

′
]
×

(P
′
P †)x = Fx

• F =
[
e

′
]
×

(P
′
P †)

• Hπ now has an explicit form, i.e. Hπ = P
′
P †

• Derivation only works for different camera centres



Epipolar Geometry

Consider the two image scenario where projection matrices are

P = K [I|0] P
′

= K
′
[R|t]

⇒ P † =

[
K−1

0T

]
C =

(
0
1

)
⇒ F =

[
P

′
C
]
×
P

′
P †

=
[
K

′
t
]
×
K

′
RK−1 = K

′−T
[t]×RK

−1

= K
′−T

R[Rt]×K
−1 = K

′−T
RKT

[
KRT t

]
×



Epipolar Geometry

Where are the epipoles ?

e = P

(
−RT t

1

)
= KRT t

e
′

= P
′
(

0
1

)
= K

′
t

Also, the most useful form of F is

F = K
′−T

[t]×RK
−1



Epipolar Geometry

Consider the representation of the fundamental matrix

F = K
′−T

[t]×RK
−1

⇒ x
′T
Fx = 0

⇒ x
′T
K

′−T
[t]×RK

−1x = 0

This can be interpreted as

x
′T
K

′−T︸ ︷︷ ︸ [t]×R
︷ ︸︸ ︷
K−1x = 0

• Terms denoted are the calibrated image points

• Central term is the essential matrix



Epipolar Geometry

x
′T
Fx = 0

Properties : Transpose

• F for pair (P, P
′
) implies FT for (P

′
, P )



Epipolar Geometry

x
′T
Fx = 0

Properties : Epipolar Lines

• For x corresponding epipolar line is l
′

= Fx

• For x
′

corresponding epipolar line is l = F Tx
′

• Further for corresponding epipolar lines l and l
′

l
′

= F [e]×l; l = F T
[
e

′
]
×
l
′



Epipolar Geometry

x
′T
Fx = 0

Properties : Epipoles

• Any point x other than e, l
′

= Fx contains e
′

• Implies e
′T
Fx = (e

′T
F )x = 0,∀x

• ∴ e
′T
F = 0,∀x, i.e. e

′
is left null-vector of F

• Similarly, Fe = 0



Epipolar Geometry

camera
centre

parallel
lines

point
vanishing

image

e

Special Motions : Pure Translation

• Consider pure translation t

• Points in 3-D move on lines parallel to t

• Image intersection of these parallel lines is the vanishing point v

• v in the direction of t

• v is the epipole of both views

• Imaged parallel lines are epipolar lines



Epipolar Geometry

ee //C C



Epipolar Geometry

Special Motions : Pure Translation

• Assuming camera parameters do not change

• P = K [I|0] ; P
′

= K [I|t]
• ∴ F =

[
e

′
]
×
KK−1 =

[
e

′
]
×

• Ideal rectified stereo is a special case of this



Epipolar Geometry

Projective Ambiguity

• Camera pairs (P, P
′
) and (PH,P

′
H) are equivalent

• H is a 4× 4 projective transformation

• Recovery of camera pairs given F matrix

• Notice that PX = (PH)(H−1X)

• Basic asymmetry :
• Camera pairs determine F uniquely
• F does not do that for camera pairs
• Ambiguity of “projective basis”



Epipolar Geometry

Canonical Form of Projective Matrices

• Given above projective ambiguity, need to fix it

• Note that we always only measure “relative” motion

• Fix reference frame to first image, i.e. P = [I|0]

• Consequently P
′

= [M |m]

• Here F = [m]×M



Epipolar Geometry

Now we specialise to the essential matrix, i.e. calibrated cameras



Epipolar Geometry

Normalised coordinates

• Let P = K [R|t]
• Assume we know or can estimate K

• Can apply K−1 to image coordinates x

• Normalised coordinates x̂ = K−1x

• x̂ = [R|t]X



Epipolar Geometry

Consider camera pairs P = [I|0] and P
′

= [R|t]
Essential matrix is given by

E = [t]×R = R
[
RT t

]
×

x̂
′TEx̂ = 0

As shown earlier, we have

E = K
′T
FK



Epipolar Geometry

Essential Matrix properties

• Has fewer degrees of freedom than the fundamental matrix

• Defined by rotation and translation, i.e. six degrees of freedom

• However there’s an overall scale ambiguity

• The essential matrix has 5 degrees of freedom

• Implies a translation scale ambiguity

• We can only solve for heading direction and not actual translation



Epipolar Geometry

A 3× 3 matrix is an essential matrix if and only if two if its singular
values are equal, and the third is zero

Essential Matrix properties

• Rank-2 constraint implies third singular value is zero

• Canonical form is singular values of (1, 1, 0)

• Alternate form: (EET )E − 1
2 tr(EET )E = 0



Epipolar Geometry

Proof Consider the decomposition E = [t]×R = SR

W =

 0 −1 0
1 0 0
0 0 1

Z =

 0 1 0
−1 0 0
0 0 0


• W is orthogonal

• Z is skew-symmetric

• Skew-symmetric S can always be written as S = kUZUT

• U is orthogonal

• Z = diag(1,1,0)W upto scale

• Implies S = Udiag(1, 1, 0)WUT

• E = SR = Udiag(1, 1, 0)WUTR

• Above is a singular value decomposition of E (Q.E.D.)



Epipolar Geometry

Decomposing Essential Matrix

• SVD of E is U diag(1, 1, 0)V T

• Ignoring signs, there are two factorisations
• S = UZUT and R = UWV T

• S = UZUT and R = UWTV T

• t is (upto scale) the last column of U

• Sign of t is ambiguous

• Results in 4 possible decomposition pairs

• Need to verify depth positivity of one point to disambiguate

• Depth positivity will give an unambiguous solution



Epipolar Geometry Computation

We now shift gears and consider
computation of the Fundamental Matrix



Epipolar Geometry Computation

x
′T
Fx = 0

Linear Estimation of F

• Above equation can solve for F given enough (x,x
′
) pairs

• A minimum of 7 matched points are required

• Denote x = (x, y, 1)
T

and x
′

= (x
′
, y

′
, 1)

T

• Can write the bilinear form as linear equation in entries of F



Epipolar Geometry Computation

x
′T
Fx = 0

⇒
[
x

′
y

′
1
]  f1 f2 f3

f4 f5 f6
f7 f8 f9

 x
y
1

 = 0

⇒
(
x

′
x x

′
y x

′
y

′
x y

′
y y

′
x y 1

)
f = 0

⇒
(
x

′
⊗ x

)T
f = 0



Epipolar Geometry Computation

Af =

 x
′
1x1 x

′
1y1 x

′
1 y

′

1x1 y
′

1y1 y
′

1 x1 y1 1
...

...
...

...
...

...
...

...
...

x
′
nxn x

′
nyn x

′
n y

′

nxn y
′

nyn y
′

n xn yn 1

f = 0

Eight-Point Algorithm

• Homogeneous set of equations

• f determined only upto scale

• For solution, A must be of rank at most 8

• For rank = 8, solution is exact (upto scale)

• Solution is the right null-space of A

• Solved using SVD

• Very popular and useful algorithm



Epipolar Geometry Computation

Af =

 x
′
1x1 x

′
1y1 x

′
1 y

′

1x1 y
′

1y1 y
′

1 x1 y1 1
...

...
...

...
...

...
...

...
...

x
′
nxn x

′
nyn x

′
n y

′

nxn y
′

nyn y
′

n xn yn 1

f = 0

Eight-Point Algorithm

• When data is noisy, A is full rank

• Use A to find least squares solution

• Lsq solution is smallest right-singular vector of A

• Equivalent to minimising algebraic error ||Af ||



Epipolar Geometry Computation

Linear Estimation

• F is a rank-2 matrix

• Rank constraint not enforced for linear estimate

• Leads to violation of the epipolar geometry properties

• Need to enforce the rank-2 constraint on F



Epipolar Geometry Computation

Enforcing rank-2 constraint

• Project F to closest rank-2 matrix, say F
′

• Distance is the Frobenius norm ||F − F
′
||

• Minimise Frobenius distance using SVD

• Let F = Udiag(r, s, t)V T

• Set t = 0, i.e. F
′

= Udiag(r, s, 0)V T

• Need to enforce the rank-2 constraint on F

• This is guaranteed to minimise required measure



Epipolar Geometry Computation

Typical A matrix

Normalised Eight Point Algorithm

• Original 8-pt algorithm due to Longuet-Higgins (1981)

• Need to take special care when data is noisy

• Note the linear row-term of A is
(
x

′ ⊗ x
)T

• Each term in kronecker product is of different scale

• Noise is scaled differently in each term

Table taken from slides of Marc Pollefeys



Epipolar Geometry Computation

Normalised Eight Point Algorithm

• Original 8-pt algorithm due to Longuet-Higgins (1981)

• Need to take special care when data is noisy

• Note the linear row-term of A is
(
x

′ ⊗ x
)T

• Each term in kronecker product is of different scale

• Noise is scaled differently in each term

• Linear Algebra view : Poorly conditioned computation

• Statistical Estimation view : Non-white covariance of noise
(data dependent)

• Need to scale computation (i.e. whiten) to make it useful

• Hartley’s paper : “In Defence of the Eight-Point Algorithm”



Epipolar Geometry Computation

Normalised Eight Point Algorithm

• Need to scale data appropriate to improve conditioning

• Transformed data should be close to “whitened” data

• Done by translating and scaling

• Translation : Remove centroid of data

• Scaling : Make RMS distance from origin equal to
√

2

• Apply transforms T and T
′

to sets x and x
′

• Compute linear estimate of fundamental matrix F

• Enforce rank-2 constraint

• Map back to image co-ordinate by putting back T and T
′



Epipolar Geometry Computation



Epipolar Geometry Computation

Estimation

• Normalised Eight Point algorithm works well, but not optimal

• Optimal estimate would require direct enforcement of rank-2
constraint

• Results in non-linear iterative minimisation of algebraic error
||Af ||

• Algebraic error does not have real geometric significance

• Can define geometric error terms and minimise non-linearly

• Geometric error term will be measurable in the image plane



Epipolar Geometry Computation

Seven Point Algorithm

• Fundamental matrix F has seven degrees of freedom

• Each point correspondence pair provides one constraint

• Hence should be able to solve for F using seven points

• Null space is now two-dimensional, say spanned by F 1 an F 2

• Rank constraint is |F 1 + λF 2| = 0

• Cubic equation in λ, solve analytically

• Either one or three real solutions

• May need extra points for verification

• Estimation: Use same SVD approach as for 8-point algorithm



Epipolar Geometry Computation

Minimise∑
i

d(xi, x̂i)
2

+ d(xi
′
, x̂i

′
)
2

Geometric Error Minimisation

• xi ↔ xi
′

are measured correspondences

• x̂i and x̂i
′

are “true” matches satisfying epipolar constraints

• Assume camera matrices P = [I|0] and P
′

= [M |t]
• Vary P

′
and Xi and measure above “reprojection” error

• After minimisation, compute F = [t]×M

• Note that rank-2 constraint is automatically enforced here

• This is the optimal “Gold Standard” solution

• Non-linear optimisation is expensive and needs good initialisation

• Cost substantially reduced using sparse Levenberg-Marquardt
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Epipolar Geometry Computation

Automatic Computation of F

• Input is only two images

• Compute interest points

• Match points across two images using local neighbourhood

• Run RANSAC robust estimator for removing outliers

• Estimate F matrix using inliers and improve using non-linear
estimate

• Use estimate of F to guide matching by search in a band
around epipolar lines

• Iterate till the number of correspondences obtained is stable



Epipolar Geometry Computation

Left and right images



Epipolar Geometry Computation

Detected Corners



Epipolar Geometry Computation

Putative matches that have many wrong ones!



Epipolar Geometry Computation

Inliers and final set of matches (including a few wrong ones)


