E1 216 COMPUTER VISION
 LECTURE 07: GEOMETRIC TRANSFORMATIONS

Venu Madhav Govindu
Department of Electrical Engineering Indian Institute of Science, Bengaluru

Geometric Transformations

- Use multiple or single image(s)
- Geometric - pure 3D rotations - mosaics
- Radiometric - high dynamic range imaging
- Focus on geometric transformations

Geometric Transformations

coolopticalillusions.com

Geometric Transformations

coolopticalillusions.com

Geometric Transformations

$$
\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{T}]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Pinhole Camera

- Effects of rotations and translations are mixed
- Only rotations ? (Mosaics)
- Only translations ? (Stereo; considered later)
- Both ? (Multiview Geometry; considered later)

Geometric Transformations

$$
\begin{aligned}
& \boldsymbol{p}_{1}=\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]=\boldsymbol{K}[\boldsymbol{I} \mid \mathbf{0}]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{K} \boldsymbol{P} \\
& \boldsymbol{p}_{2}=\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right]=\boldsymbol{K}[\boldsymbol{R} \mid \mathbf{0}]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{K} \boldsymbol{R} \boldsymbol{P}
\end{aligned}
$$

$$
\boldsymbol{p}_{2}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{K}^{-1} \boldsymbol{p}_{1}
$$

Pure 3D Camera Rotation

- $\boldsymbol{P}=[X, Y, Z]^{T}$
- Pure 3D Rotations is a special case
- \boldsymbol{p}_{1} and \boldsymbol{p}_{2}
- related via camera parameters
- does not depend on 3D geometry

Geometric Transformations

Rotating Camera

- Centre of projection same for all cameras
- Each image samples from same parametric ray set
- No "parallax" problem
- Depth plays no role
- Excellent for mosaics
- Equivalent to wider FOV camera

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV $=50 \times 35^{\circ}$

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV $=200 \times 135^{\circ}$

Slide from Brown \& Lowe

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV $=200 \times 135^{\circ}$
- Panoramic Mosaic $=360 \times 180^{\circ}$

Slide from Brown \& Lowe

Geometric Transformations

$$
\begin{gathered}
\boldsymbol{p}_{1}=\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]=\boldsymbol{K}[\boldsymbol{I} \mid \mathbf{0}]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \\
\boldsymbol{p}_{2}=\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right]=\boldsymbol{K}[\boldsymbol{I} \mid \mathbf{T}]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \\
\boldsymbol{p}_{1}=\boldsymbol{K} \boldsymbol{P} \text { and } \boldsymbol{p}_{2}=\boldsymbol{K}(\boldsymbol{P}+\boldsymbol{T}) \\
x_{2}-x_{1}=\frac{f B}{Z}
\end{gathered}
$$

Pure 3D Camera Translation

- $\boldsymbol{P}=[X, Y, Z]^{T}$
- \boldsymbol{p}_{1} and \boldsymbol{p}_{2} related via translation and depth
- No simple relationship like pure rotations
- Used to recover 3D depth (stereo)

Geometric Transformations

urixblog.com

Geometric Transformations

Pure 3D Translations

- No single geometric (parametric) transformation
- Non-linear dependence on depth
- Use to estimate depth (stereo)
- Effects of 3D rotation and translation are complementary

We can also take a purely 2D geometric transformation view Following slides borrowed from Noah Snavely

Image Warping

- image filtering: change range of image

$$
\text { - } g(x)=h(f(x))
$$

- image warping: change domain of image
- $g(x)=f(h(x))$

Image Warping

- image filtering: change range of image

$$
\text { - } g(x)=h(f(x))
$$

- image warping: change domain of image

Parametric (global) warping

- Examples of parametric warps:

rotation

perspective

aspect

cylindrical

Parametric (global) warping

- Examples of parametric warps:

aspect

Parametric (global) warping

$$
p=(x, y)
$$

$\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

- Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

- What does it mean that T is global?
- Is the same for any point p
- can be described by just a few numbers (parameters)
- Let's consider linear xforms (can be represented by a 2D matrix):

$$
\mathbf{p}^{\prime}=\mathbf{T} \mathbf{p} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Common linear transformations

- Uniform scaling by s :

(0,0)

$$
\mathbf{S}=\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]
$$

What is the inverse?

Common linear transformations

－Rotation by angle θ（about the origin）

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

What is the inverse？
For rotations：
$\mathbf{R}^{-1}=\mathbf{R}^{T}$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?
2D mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned} \quad \mathbf{T}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

2D mirror across line $y=x$?

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =x
\end{aligned} \quad \mathbf{T}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Translation?

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{y}
\end{aligned}
$$

Translation is not a linear operation on 2D coordinates

All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and
- Mirror

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Homogeneous coordinates

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

Translation

- Solution: homogeneous coordinates to the rescue

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]}
\end{aligned}
$$

Affine transformations

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

any transformation with
last row [0001 l we call an
affine transformation

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]
$$

Basic affine transformations

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\text { Translate }
\end{gathered}
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]}
\end{array}\right] \underset{\text { Scale }}{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\text { 2D in-plane rotation }
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=} \\
\text { Shear }
\end{gathered}
$$

Affine Transformations

- Affine transformations are combinations of ...
- Linear transformations, and
- Translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- Properties of affine transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

Where do we go from here?

Projective Transformations aka Homographies aka Planar Perspective Maps

$$
\mathbf{H}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]
$$

Called a homography (or planar perspective map)

Homographies

Homographies

- Homographies ...
- Affine transformations, and
- Projective warps

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

- Properties of projective transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Homographies

Image Warping

- Given a coordinate xform $\left(x^{\prime}, y^{\prime}\right)=\boldsymbol{T}(x, y)$ and a source image $f(x, y)$, how do we compute an xformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$?

Forward Warping

- Send each pixel $f(x)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=\boldsymbol{T}(x, y)$ in $\boldsymbol{g}\left(x^{\prime}, y^{\prime}\right)$
- What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel $f(x, y)$ to its corresponding location $x^{\prime}=\boldsymbol{h}(x, y)$ in $\boldsymbol{g}\left(x^{\prime}, y^{\prime}\right)$
- What if pixel lands "between" two pixels?
- Answer: add "contribution" to several pixels, normalize later (splatting)
- Can still result in holes

Inverse Warping

- Get each pixel $\boldsymbol{g}\left(x^{\prime}, \boldsymbol{y}^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}(x, y)$ in $f(x, y)$
- Requires taking the inverse of the transform
- What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)$ from its corresponding location $\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{x})$ in $\boldsymbol{f}(\boldsymbol{x})$
- What if pixel comes from "between" two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

Interpolation

- Possible interpolation filters:
- nearest neighbor
- bilinear
- bicubic (interpolating)
- sinc
- Needed to prevent "jaggies"
and "texture crawl"
(with prefiltering)

Geometric Transformations

Enlarged FOV; Why do we have a radial shape ?

Following slides on impact of geometry of virtual camera plane Taken from Magnus Oskarsson's slides

Panoramas

For calibrated cameras:

Panoramas

－《臽－ ব 三
－ 20

Panoramas

Panoramas

Panoramas

Panoramas

For calibrated cameras:

Distances are not preserved. Points close to the x-axis tend to

Panoramas

Panoramas

For calibrated cameras:

Cannot transfer all points into the first image.

Panoramas

For calibrated cameras：

Project onto a cylinder instead．

Panoramas

For calibrated cameras:

Distances are roughly preserved. Lines may not appear straight.

Geometric Transformations

Figure 3: A simplistic model showing how Projected Coordinate Systems are created using a sphere. Source: Britannica

- Topology of sphere \neq that of 2D plane
- Issue has plagued map making!

Geometric Transformations

Figure 4: The Mercator projection exaggerates the size of the countries as you move away from the Equator. Source: snippet from The True Size Of.

Geometric Transformations

center point, (b) is in aMercator projection that preserves shape, and (c) is in cylindrical equal-area projection that preserves area. Source: Wikipedia.
https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

Geometric Transformations

Choosing the right projection system

Geometric Transformations

AFRICA IS BIG!

Geometric Transformations

Why is north 'up'?

Geometric Transformations

Recovering Geometry

- Recall pure 3D rotations
- $\boldsymbol{p}_{2}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{K}^{-1} \boldsymbol{p}_{1}$
- Do we need to know \boldsymbol{K} and \boldsymbol{R} ?

- H is a homography/collineation/projective transformation

Recovering Geometry

- Recall pure 3D rotations
- $\boldsymbol{p}_{2}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{K}^{-1} \boldsymbol{p}_{1}$
- Do we need to know \boldsymbol{K} and \boldsymbol{R} ?
- $\boldsymbol{H}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{K}^{-1}$
- \boldsymbol{H} is 3×3 projective matrix
- \boldsymbol{H} is a homography/collineation/projective transformation
- $\boldsymbol{p}_{2}=\boldsymbol{H} \boldsymbol{p}_{1}$

Recovering Geometry

- Recall pure 3D rotations
- $\boldsymbol{p}_{2}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{K}^{-1} \boldsymbol{p}_{1}$
- Do we need to know \boldsymbol{K} and \boldsymbol{R} ?
- $\boldsymbol{H}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{K}^{-1}$
- \boldsymbol{H} is 3×3 projective matrix
- \boldsymbol{H} is a homography/collineation/projective transformation
- $\boldsymbol{p}_{2}=\boldsymbol{H} \boldsymbol{p}_{1}$

Homography relationship

How can we use this relationship $\boldsymbol{p}_{2}=\boldsymbol{H} \boldsymbol{p}_{1}$

- Radiometric: $I_{1}(\boldsymbol{p})=I_{2}(\boldsymbol{H} \boldsymbol{p})$
- Is this always true?
- Geometric: $\boldsymbol{p}_{2}=\boldsymbol{H} \boldsymbol{p}_{1}$
- Need correspondences $\boldsymbol{p}_{1} \leftrightarrow \boldsymbol{p}_{2}$

Geometric Transformations

$$
\boldsymbol{H}=\arg \min _{\boldsymbol{H}}\left\|I_{1}(\boldsymbol{p})-I_{2}(\boldsymbol{H} \boldsymbol{p})\right\|^{2}
$$

Update step $\quad \boldsymbol{H} \leftarrow \boldsymbol{H}+\delta \boldsymbol{H}$
Use $\quad \boldsymbol{I}_{2}((\boldsymbol{H}+\delta \boldsymbol{H}) \boldsymbol{p}) \approx I_{2}(\boldsymbol{H} \boldsymbol{p})+\boldsymbol{J}^{T} \delta \boldsymbol{H}$
Minimise

$$
\left\|\boldsymbol{J}^{T} \delta \boldsymbol{H}-\left(I_{1}(\boldsymbol{p})-I_{2}(\boldsymbol{H} \boldsymbol{p})\right)\right\|^{2}
$$

Estimating Homographies

- Solution: Least square fit of intensities
- Is it a linear problem?
- Warp, Update, Warp, till convergence
- Use all pixels in overlapping area
- Robust loss $\rho($.$) for each pixel$
- Multiscale approaches used. Why?
- Many issues in estimation

Geometric Transformations

$$
\begin{aligned}
\boldsymbol{p}_{2} & =\boldsymbol{H} \boldsymbol{p}_{1} \\
{\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
\end{aligned}
$$

Geometric Estimation

- Correspondences $\boldsymbol{p}_{1} \leftrightarrow \boldsymbol{p}_{2}$ (SIFT etc.)
- $\boldsymbol{p}_{2}=\boldsymbol{H} \boldsymbol{p}_{1}$ is a projective relationship
- Non-linear relationship?

Geometric Transformations

$$
\begin{align*}
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] }=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \\
& \text { Implies } \\
& x_{2}=\frac{h_{11} x_{1}+h_{12} y_{1}+h_{13}}{h_{31} x_{1}+h_{32} y_{1}+h_{33}} \tag{1}\\
& y_{2}=\frac{h_{21} x_{1}+h_{22} y_{1}+h_{13}}{h_{31} x_{1}+h_{32} y_{1}+h_{33}} \tag{2}
\end{align*}
$$

Can solve using non-linear least squares on equations

$$
\begin{aligned}
x_{2} & =\frac{h_{11} x_{1}+h_{12} y_{1}+h_{13}}{h_{31} x_{1}+h_{32} y_{1}+h_{33}} \\
y_{2} & =\frac{h_{21} x_{1}+h_{22} y_{1}+h_{13}}{h_{31} x_{1}+h_{32} y_{1}+h_{33}}
\end{aligned}
$$

Linear in entries of \boldsymbol{H}, carry-over will result in

$$
\begin{aligned}
x_{2}\left(h_{31} x_{1}+h_{32} y_{1}+h_{33}\right)-\left(h_{11} x_{1}+h_{12} y_{1}+h_{13}\right) & =0 \\
y_{2}\left(h_{31} x_{1}+h_{32} y_{1}+h_{33}\right)-\left(h_{21} x_{1}+h_{22} y_{1}+h_{23}\right) & =0
\end{aligned}
$$

Leads to

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{2} & -y_{1} x_{2} & -x_{2} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{2} & -y_{1} y_{2} & -y_{2}
\end{array}\right]\left[\begin{array}{c}
h_{11} \\
h_{12} \\
h_{13} \\
\vdots \\
h_{33}
\end{array}\right]=\mathbf{0}
$$

Geometric Transformations

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{2} & -y_{1} x_{2} & -x_{2} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{2} & -y_{1} y_{2} & -y_{2}
\end{array}\right]\left[\begin{array}{c}
h_{11} \\
h_{12} \\
h_{13} \\
\vdots \\
h_{33}
\end{array}\right]=\mathbf{0}
$$

Linear Method

- 2 eqns per correspondence
- Unknowns in \boldsymbol{H} ?
- Collect all equations into $\boldsymbol{A} \boldsymbol{h}=\mathbf{0}$ problem
- Solution?
- Two important considerations
- Robustness (RANSAC or IRLS?)
- Conditioning (Scale of data)

Geometric Transformations

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{2} & -y_{1} x_{2} & -x_{2} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{2} & -y_{1} y_{2} & -y_{2}
\end{array}\right]\left[\begin{array}{c}
h_{11} \\
h_{12} \\
h_{13} \\
\vdots \\
h_{33}
\end{array}\right]=\mathbf{0}
$$

Normalisation

- Recall that all correspondences are noisy
- (x, y) co-ordinates of order of 1000
- Quadratic terms in \boldsymbol{A}
- Errors in observed \boldsymbol{A} are not uniform in dimensions
- Leads to very poor conditioning of $\boldsymbol{A} \boldsymbol{h}=\mathbf{0}$
- Remedy
- Scale co-ordinates (x, y) to have magnitude around 1
- Solve
- Put back original scale
* Find teatures using SIFT (Vl-feat package) or SURF (inbuilt in MATLAB)
https://www.vlfeat.org/overview/sift.html
* Feature matching using vl-feat or MATLAB inbuilt functions.
NOTE: PLEASE BE MINDFUL OF THE CONVENTIONS USED FOR IMAGE COORDINATE SYSTEM, CAMERA
* Raw (putative) matches: outliers included.

Need robustness while estimating homography.

$$
\begin{aligned}
& p^{\prime}=\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right) \longleftrightarrow\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=e^{\text {are matched features }} \text { in the } 2 \text { images } \\
& p^{\prime}=H p \\
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \\
& x^{\prime}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}} \\
& y^{\prime}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}} \longrightarrow \text { (a) }
\end{aligned}
$$

Method-1:

$$
\begin{align*}
& \text { (a) }\left(\begin{array}{l}
\text { Method-1: } \\
\left(h_{31} x+h_{32} y+h_{33}\right) x^{\prime}=h_{11} x+h_{12} y+h_{13} \\
\Rightarrow h_{31} x x^{\prime}+h_{32} y x^{\prime}+h_{33} x^{\prime}-h_{11} x-h_{12} y-h_{13}=0 \\
(-x) h_{11}+(-y) h_{12}+(-1) h_{13}+(0) h_{21}+(0) h_{22}+(0) h_{23} \\
+\left(x x^{\prime}\right) h_{31}+\left(y x^{\prime}\right) h_{32}+\left(x^{\prime}\right) h_{33}=0
\end{array}\right.
\end{align*}
$$

(b):

$$
\begin{align*}
& \text { 0): } \begin{aligned}
(0) h_{11}+(0) h_{12}+(0) h_{13}+ & (-x) h_{21}+(-y) h_{22}+(-1) h_{23} \\
& +\left(x y^{\prime}\right) h_{31}+\left(y y^{\prime}\right) h_{32} \\
& +\left(y^{\prime}\right) h_{33}=0
\end{aligned}
\end{align*}
$$

$h_{11}, \cdots h_{33}$ are the unknowns.

$$
\underbrace{\left[\begin{array}{ccccccccc}
-x & -y & -1 & 0 & 0 & 0 & x x^{\prime} & y x^{\prime} & x^{\prime} \\
0 & 0 & 0 & -x & -y & -1 & x y^{\prime} & y y^{\prime} & y^{\prime} \\
\vdots & \\
\vdots & & & & \\
\hline
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
h_{11} \\
h_{11} \\
h_{12} \\
h_{13} \\
h_{21} \\
\vdots \\
h_{33}
\end{array}\right]}_{A h=0}=0
$$

Soln: h: least eigen vector of ($A^{\top} A$)
(or)
h : the right singular vector of ' A ' comesponkin. to the least singular value.

Normalisation:

$$
\begin{aligned}
& \text { Normalisation: } \\
& \text { Consider }\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
40 & 0 \\
200 \\
1
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
8 & 00 \\
400 \\
4 & 1
\end{array}\right) \\
& {\left[\begin{array}{ccccccc}
-4 \times 10^{2}-2 \times 10^{2} & -1 & 0 & 0 & 0 & 3.2 \times 10^{5} & 1.6 \times 10^{5} \\
8 \times 10^{2}
\end{array}\right]} \\
& 0
\end{aligned} 00
$$

Note that the entries are ranging from

$$
0-10^{5} \text { in } A \text {, then it will }
$$

range from $0-10^{10}$ in $A^{\top} A$. Lack of homogenity in the coordinates
\Rightarrow poor conditioning of $A\left(G^{\top}\right)$
\rightarrow We want to reduce the range of the entries in $A\left(\Leftrightarrow A^{\top} A\right)$ to improve the conditioning ($i \cdot e$, to reduce the $K\left(A^{\top} A\right)$).
\rightarrow Apply some transformations to the image
(i) translation coordinates in each image.
(ii) scaling.
(i) Translation: Origin of the new coordinate system should be at the centroid of the image points.
(ii) After translation, the coordinates are scaled sit mean distance from the origin to a point equals $\sqrt{2}$.
(i)

$$
\begin{aligned}
& \left\{x_{i}\right\},\left\{y_{i}\right\}, i=1 \ldots N \\
& \bar{x}=\frac{1}{N} \sum x_{i}, \bar{y}=\frac{1}{N} \sum y_{i}
\end{aligned}
$$

we want,

$$
\begin{aligned}
& x_{i}^{\prime}=x_{i}-\bar{x} \\
& \frac{1}{N} \sum x_{i}^{\prime}=\frac{1}{N} \sum x_{i}-\bar{x}=0 .
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
1 & 0 & -\bar{x} \\
0 & 1 & -\bar{y} \\
0 & 0 & 1
\end{array}\right]}_{T_{11}}\left[\begin{array}{l}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

(ii) Mean distance from the origin to a point equals $\sqrt{2}$.

$$
\begin{aligned}
c^{\prime} & =\frac{1}{N} \sum d\left(x_{i}^{\prime}, y_{i}^{\prime}\right) \\
& =\frac{1}{N} \sum\left(\sqrt{x_{i}^{\prime 2}+y_{i}^{\prime 2}}\right)
\end{aligned}
$$

Now if, $\quad x_{i}^{\prime \prime}=\sqrt{2} x_{i}^{\prime} / c^{\prime} ; \quad y_{i}^{\prime \prime}=\sqrt{2} y_{i}^{\prime} / c^{\prime}$
Then,

$$
\begin{aligned}
& C^{\prime \prime}=\frac{1}{N} \sum d\left(x_{i}^{\prime \prime}, y_{i}^{\prime \prime}\right) \\
& =\frac{1}{N} \frac{\sum \sqrt{x_{i}^{\prime 2}+y_{i}^{\prime 2}}}{c^{\prime}}=\frac{\sqrt{2} c^{\prime}}{c^{\prime}}=\sqrt{2} . \\
& \therefore\left[\begin{array}{l}
x_{i}^{\prime \prime} \\
y_{i}^{\prime \prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\sqrt{2} / c^{\prime} & 0 & 0 \\
0 & \sqrt{2} / c^{\prime} & 0 \\
0 & & 1
\end{array}\right]}_{T_{2}^{\prime}}\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \\
& {\left[\begin{array}{c}
x_{i}^{\prime \prime} \\
y_{i}^{\prime \prime} \\
1
\end{array}\right]=T_{21} T_{11}\left[\begin{array}{l}
T_{2}^{\prime} \\
x_{i} \\
y_{i} \\
1
\end{array}\right]}
\end{aligned}
$$

$$
T_{1}=T_{21} T_{11}
$$

After transformation, we have
in image $\leftarrow P_{1}^{\prime}=T_{1} P ; \quad P_{2}^{\prime}=T_{2} P_{2} \rightarrow$ in (ames

$$
\begin{aligned}
& \begin{aligned}
P_{2}=H P_{1} & \Rightarrow T_{2}^{-1} P_{2}^{\prime}=H T_{1}^{-1} P_{1}^{2} \\
& \Rightarrow P_{2}^{\prime}=\underbrace{T_{2} H T_{1}^{-1}}_{H P^{\prime}} P_{1}^{\prime}
\end{aligned} \\
& \text { the homograph }
\end{aligned}
$$

Find the homograph
H^{\prime} using method -1; then compute

$$
\begin{aligned}
& H^{\prime}=T_{2} H T_{1}^{-1} \\
& T_{2}^{-1} H^{\prime} T_{1}=H
\end{aligned}
$$

* Using RAN SAC for robustness:

Minimum no. of points required: 4 for obtaining one homography.
Do ' N ' trials, ' P 'inlier probability.
Take randomly 4 feature matches out of N_{0} possible matches in each trial. Compute homography.
$[P]_{X}$: coos product form of a - vector.

$$
\begin{aligned}
& P^{\prime}=H P ; \quad \underbrace{\left[P^{\prime}\right]_{x} H P}=0 \\
& \left|a_{i}^{\top} h\right|<\varepsilon \\
& \left|b_{i}^{r} h\right|<\varepsilon \\
& \text { (or) } \\
& \left|\left[P^{\prime}\right]_{x} H P\right|<\varepsilon \\
& a_{i}^{\top}, b_{i} \text { roup corresponding } \\
& \varepsilon \text {-tolerance me match in ' } A \text { ' in (1) }
\end{aligned}
$$

classify other points as inliers/outtiers according to the above relations which has max inlier choose that $H_{m a x}$ which has mane inliers
\rightarrow then recompute \bar{H} using all those indies. $\quad A \bar{h}=0 \quad N:$ maxmber of $_{\text {max }}$ intiers for $H_{\text {mix }}$
\rightarrow The trials are meant to give us all the inliers, once we get them, we want to fit homography using all of them

Interpolation
\rightarrow Want to bring all the images into one frame of reference (say the first image's frame of reference).

(1) Bring the pixel locations of other images into
the 1 it image frame of reference, using the homagraphy transformations.

$$
P_{2}=H_{12} P_{1}
$$

Use H_{12} to bering points in $2^{\text {nd }}$ image to $\mathrm{p}^{\text {image }}$

$$
H_{12}^{-1} P_{2}=P_{1}
$$

Those are no longer integer locations.
(2) Then interpolate using for example Bicubic
interpolation (using the 4 nearest neighbours, in the above figure, intensity at ' e ' is computed using those at ' a ', ' b ', ' c ',, ', \rightarrow which are fractional locations obtained after step (1))

BLENDING

Once all the images are in the same frame of reference, intensities in the overlap regions are computed using blending.
(1) Feathering
α varies linearly
from 1 to 0 in the over lap region (as discussed in class)

$$
I=\alpha I_{1}+(1-\alpha) I_{2}
$$

(2) Using Image Pyramids (Not dis cussed) ore could cook it up.

Note: Interested people can also use
M-estimator's for robustness which wasnit disused in the class.

Geometric Transformations

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{2} & -y_{1} x_{2} & -x_{2} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{2} & -y_{1} y_{2} & -y_{2}
\end{array}\right]\left[\begin{array}{c}
h_{11} \\
h_{12} \\
h_{13} \\
\vdots \\
h_{33}
\end{array}\right]=\mathbf{0}
$$

Projective Scaling?

- Are all RHS zeros the same?
- What happens if we set $h_{33}=1$?
- Yields an $\boldsymbol{A} \boldsymbol{h}=\boldsymbol{b}$ problem

Geometric Transformations

Figure 9.11 Recognizing panoramas (Brown, Szeliski, and Winder 2005), figures courtesy of Matthew Brown: (a) input images with pairwise matches; (b) images grouped into connected components (panoramas); (c) individual panoramas registered and blended into stitched composites.

Recognising Panoramas

Geometric Transformations

Consistency

- Pairwise alignment causes drift
- Use all relationships ("loop closures")
- $\boldsymbol{H}_{i j}=\boldsymbol{H}_{j} \boldsymbol{H}_{i}^{-1}$
- Significantly reduces inconsistencies
- Well-developed method of motion averaging

