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Geometric Transformations

• Use multiple or single image(s)
• Geometric - pure 3D rotations - mosaics
• Radiometric - high dynamic range imaging
• Focus on geometric transformations
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Geometric Transformations
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• Effects of rotations and translations are mixed
• Only rotations ? (Mosaics)
• Only translations ? (Stereo; considered later)
• Both ? (Multiview Geometry; considered later)



Geometric Transformations
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Pure 3D Camera Rotation

• P = [X ,Y ,Z ]T

• Pure 3D Rotations is a special case
• p1 and p2

• related via camera parameters
• does not depend on 3D geometry



Geometric Transformations

Rotating Camera

• Centre of projection same for all cameras
• Each image samples from same parametric ray set
• No “parallax” problem
• Depth plays no role
• Excellent for mosaics
• Equivalent to wider FOV camera

From Noah Snavely’s slides



Why Mosaic?
Are you getting the whole picture?

• Compact Camera FOV = 50 x 35°

Slide from Brown & Lowe
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Why Mosaic?
Are you getting the whole picture?

• Compact Camera FOV = 50 x 35°
• Human FOV                = 200 x 135°
• Panoramic Mosaic        = 360 x 180°

Slide from Brown & Lowe



Geometric Transformations
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Pure 3D Camera Translation

• P = [X ,Y ,Z ]T

• p1 and p2 related via translation and depth
• No simple relationship like pure rotations
• Used to recover 3D depth (stereo)



Geometric Transformations

urixblog.com



Geometric Transformations

Pure 3D Translations
• No single geometric (parametric) transformation
• Non-linear dependence on depth
• Use to estimate depth (stereo)
• Effects of 3D rotation and translation are complementary



We can also take a purely 2D geometric transformation view
Following slides borrowed from Noah Snavely
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Image Warping 

• image filtering: change range of image 

• g(x) = h(f(x)) 

 

 

• image warping: change domain of image 

• g(x) = f(h(x)) 
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Image Warping 

• image filtering: change range of image 

• g(x) = h(f(x)) 

 

 

• image warping: change domain of image 

• g(x) = f(h(x)) 
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Richard Szeliski Image Stitching 8 

Parametric (global) warping 

• Examples of parametric warps: 

translation rotation aspect 

affine 
perspective 

cylindrical 



Richard Szeliski Image Stitching 9 

Parametric (global) warping 

• Examples of parametric warps: 

translation rotation aspect 



Parametric (global) warping 

• Transformation T is a coordinate-changing machine: 

     p’ = T(p) 

• What does it mean that T is global? 
– Is the same for any point p 

– can be described by just a few numbers (parameters) 

• Let’s consider linear xforms (can be represented by a 2D matrix): 

 

T 

p = (x,y) p’ = (x’,y’) 



Common linear transformations 

• Uniform scaling by s: 

 

 

 

(0,0) (0,0) 

What is the inverse? 



Common linear transformations 

• Rotation by angle θ (about the origin) 

 

(0,0) (0,0) 

What is the inverse? 

For rotations: 

θ 



2x2 Matrices 

• What types of transformations can be  
represented with a 2x2 matrix? 

2D mirror about Y axis? 

2D mirror across line y = x? 



• What types of transformations can be  
represented with a 2x2 matrix? 

2D Translation? 

Translation is not a linear operation on 2D coordinates 

NO! 

2x2 Matrices 



All 2D Linear Transformations 

• Linear transformations are combinations of … 
– Scale, 

– Rotation, 

– Shear, and 

– Mirror 

• Properties of linear transformations: 
– Origin maps to origin 

– Lines map to lines 

– Parallel lines remain parallel 

– Ratios are preserved 

– Closed under composition 
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Homogeneous coordinates 

Trick:  add one more coordinate: 

homogeneous image  
coordinates 

Converting from homogeneous coordinates 

x 

y 

w 

(x, y, w) 

w = 1 
(x/w, y/w, 1) 

homogeneous plane 



Translation 

• Solution: homogeneous coordinates to the 
rescue 



Affine transformations 

any transformation with  
last row [ 0 0 1 ] we call an  
affine transformation 



Basic affine transformations 
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2D in-plane rotation Shear 
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Affine Transformations 

• Affine transformations are combinations of … 
– Linear transformations, and 

– Translations 

 

• Properties of affine transformations: 
– Origin does not necessarily map to origin 

– Lines map to lines 

– Parallel lines remain parallel 

– Ratios are preserved 

– Closed under composition 
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Where do we go from here? 

affine transformation 

what happens when we 
mess with this row? 



Projective Transformations aka 
Homographies aka Planar Perspective Maps 

Called a homography  
(or planar perspective map) 



Homographies 



Homographies 

• Homographies … 

– Affine transformations, and 

– Projective warps 

 

• Properties of projective transformations: 

– Origin does not necessarily map to origin 

– Lines map to lines 

– Parallel lines do not necessarily remain parallel 

– Ratios are not preserved 

– Closed under composition 



2D image transformations 

These transformations are a nested set of groups 
• Closed under composition and inverse is a member 



Homographies 



Image Warping 

• Given a coordinate xform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute an 
xformed image g(x’,y’) = f(T(x,y))? 

f(x,y) g(x’,y’) 
x x’ 

T(x,y) 
y y’ 



Forward Warping 

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’) 

f(x,y) g(x’,y’) 
x x’ 

T(x,y) 

• What if pixel lands “between” two pixels? 

y y’ 



Forward Warping 

• Send each pixel f(x,y) to its corresponding 
location x’ = h(x,y) in g(x’,y’) 

f(x,y) g(x’,y’) 
x x’ 

T(x,y) 

• What if pixel lands “between” two pixels? 

• Answer: add “contribution” to several pixels, 
normalize later (splatting) 

• Can still result in holes 

y y’ 



Inverse Warping 

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y) 

f(x,y) g(x’,y’) 
x x’ 

T-1(x,y) 

• Requires taking the inverse of the transform 

• What if pixel comes from “between” two pixels? 

y y’ 



Inverse Warping 

• Get each pixel g(x’) from its corresponding 
location x’ = h(x) in f(x) 

• What if pixel comes from “between” two pixels? 

• Answer: resample color value from interpolated 
(prefiltered) source image 

f(x,y) g(x’,y’) 
x x’ 

y y’ 
T-1(x,y) 



Interpolation 

• Possible interpolation filters: 

– nearest neighbor 

– bilinear 

– bicubic (interpolating) 

– sinc 

• Needed to prevent “jaggies” 
 and “texture crawl”  

       (with prefiltering) 



Geometric Transformations

Enlarged FOV; Why do we have a radial shape ?



Following slides on impact of geometry of virtual camera plane
Taken from Magnus Oskarsson’s slides



Panoramas

For calibrated cameras:

X

Z

Image1

Image2

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 32 / 42



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 33 / 42



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 34 / 42



Panoramas

Points are transformed to the first image.

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 35 / 42



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 36 / 42



Panoramas

For calibrated cameras:

X

Z

Image1

Image2

Distances are not preserved. Points close to the x-axis tend to infinity.

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 37 / 42



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 38 / 42



Panoramas

For calibrated cameras:

X

Z

Image1

Image2

Cannot transfer all points into the first image.
Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 39 / 42



Panoramas

For calibrated cameras:

X

Z

Image1

Image2

Project onto a cylinder instead.

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 40 / 42



Panoramas

For calibrated cameras:

Distances are roughly preserved. Lines may not appear straight.

Magnus Oskarsson Computer Vision: Lecture 4 2018-01-24 41 / 42



Geometric Transformations

• Topology of sphere 6= that of 2D plane
• Issue has plagued map making!

https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f


Geometric Transformations

https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f
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Geometric Transformations

https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f


Geometric Transformations

https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f


Geometric Transformations

AFRICA IS BIG!

https://www.visualcapitalist.com/wp-content/uploads/2020/02/true-size-of-africa.jpg

https://www.visualcapitalist.com/wp-content/uploads/2020/02/true-size-of-africa.jpg


Geometric Transformations

Why is north ‘up’ ?

Himal Magazine



Geometric Transformations

Recovering Geometry

• Recall pure 3D rotations
• p2 = KRK−1p1
• Do we need to know K and R?
• H = KRK−1

• H is 3× 3 projective matrix
• H is a homography/collineation/projective transformation
• p2 = Hp1
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Geometric Transformations

Recovering Geometry

• Recall pure 3D rotations
• p2 = KRK−1p1
• Do we need to know K and R?
• H = KRK−1

• H is 3× 3 projective matrix
• H is a homography/collineation/projective transformation
• p2 = Hp1

Homography relationship

How can we use this relationship p2 = Hp1
• Radiometric: I1(p) = I2(Hp)
• Is this always true?
• Geometric: p2 = Hp1
• Need correspondences p1 ↔ p2



Geometric Transformations

H = arg minH ||I1(p)− I2(Hp)||
2

Update step H ← H + δH

Use I2((H + δH )p) ≈ I2(Hp) + J T δH

Minimise ||J T δH − (I1(p)− I2(Hp))||
2

Estimating Homographies

• Solution: Least square fit of intensities
• Is it a linear problem?
• Warp, Update, Warp, till convergence
• Use all pixels in overlapping area
• Robust loss ρ(.) for each pixel
• Multiscale approaches used. Why?
• Many issues in estimation



Geometric Transformations

p2 = Hp1 x2
y2
1

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
y1
1


Geometric Estimation

• Correspondences p1 ↔ p2 (SIFT etc.)
• p2 = Hp1 is a projective relationship
• Non-linear relationship?



Geometric Transformations

 x2
y2
1

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
y1
1


Implies

x2 =
h11x1 + h12y1 + h13
h31x1 + h32y1 + h33

(1)

y2 =
h21x1 + h22y1 + h13
h31x1 + h32y1 + h33

(2)

Can solve using non-linear least squares on equations



Geometric Transformations

x2 =
h11x1 + h12y1 + h13
h31x1 + h32y1 + h33

y2 =
h21x1 + h22y1 + h13
h31x1 + h32y1 + h33

Linear in entries of H , carry-over will result in

x2(h31x1 + h32y1 + h33)− (h11x1 + h12y1 + h13) = 0

y2(h31x1 + h32y1 + h33)− (h21x1 + h22y1 + h23) = 0

Leads to

[
x1 y1 1 0 0 0 −x1x2 −y1x2 −x2
0 0 0 x1 y1 1 −x1y2 −y1y2 −y2

]

h11
h12
h13
...
h33

 = 0



Geometric Transformations

[
x1 y1 1 0 0 0 −x1x2 −y1x2 −x2
0 0 0 x1 y1 1 −x1y2 −y1y2 −y2

]

h11
h12
h13
...
h33

 = 0

Linear Method
• 2 eqns per correspondence
• Unknowns in H ?
• Collect all equations into Ah = 0 problem
• Solution ?
• Two important considerations

• Robustness (RANSAC or IRLS?)
• Conditioning (Scale of data)



Geometric Transformations

[
x1 y1 1 0 0 0 −x1x2 −y1x2 −x2
0 0 0 x1 y1 1 −x1y2 −y1y2 −y2

]

h11
h12
h13
...
h33

 = 0

Normalisation
• Recall that all correspondences are noisy
• (x, y) co-ordinates of order of 1000
• Quadratic terms in A
• Errors in observed A are not uniform in dimensions
• Leads to very poor conditioning of Ah = 0
• Remedy

• Scale co-ordinates (x, y) to have magnitude around 1
• Solve
• Put back original scale


























Find features using sift L feat package or

SURF inbuilt in MATLAB

Feature matching using v1 feat or MATLAB inbuilt

functions
NOTE PLEASE BE MINDFUL OF

THE CONVENTIONS

USED FOR IMAGE COORDINATE
SYSTEM

CAMERA

Raw putative matches outliers
included

Need robustness while estimating tomography

P 4 Yy
are matchedfeatures
in the 2 images
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hey Rt h329th33

https://www.vlfeat.org/overview/sift.html
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Sohn h least eigenvector of LATA

h the right singular vector
of A'corresponds

to the least singular value

Normalisation

L fi CY fi
il a

4 102 2 102 I O O O 3.2 105 1.6 105 8 1021

O O 4102 2
102 I l 6 105 0.8 105 4

102

Note that the entries are ranging from

O 105in A then it will

Vange from O lo in ATA

Lack of homogeneity
in the coordinates

poor conditioning
of A r

ATA

we want to reduce the range of the

entries in A ATA to improve the
imagecoordinates

conditioningLi e to reduce the KCATA



Apply some transformations to the imagecoordinates in
d translation each image
ii scaling

d Translation Origin
of the new coordinate

system should be at the centroid of the

image points

Cie After translation the
coordinates are sealed

srt mean distance from
the origin to a

point equals fi

cis Rig fyi i I M

I II see g In sc.y

N

we want n ni I

INE ni in Ini
E o
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Cii Mean distance from the origin to a

point equals E
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I

T TITI
A wm t

in image R Ip pz T.z.pe 7in if
B Hp TIPI H Ti p

pz e Tz H Ti p
Find the homography H

H using method I then compute

H TzH Ti

TI H T H

Using RAMSAC for robustness

Minimum no of points required 4 for

obtaining one homography

Do M trials p'inlier probability

Take randomly 4 feature
matches out

of Mo possible matches
in each trial

Compute homography
Crossproduct
form of a

T o vector



P Hp Cpi Hp o
dir

laith Is e
lbEhkehfPYxHp1cEaiT.brows corresponflinsmematch in A'in
E tolerance

classify other points as intiersoultiers
according

to the above relations
choose that H which has

man inliers
Max

then recompute tf using
all those

inliers A O N number of
2Nx9 inliers for Hima

The trials are meant to give us all theinliers
once we getthem we want to fit homography
using all of them

Interpolation
want to bring all the

images into one frameof
reference say the first
image's frame of reference
A



A

a
a d

a e a ee

1stimage's
weed intensities at the centre of the frame of

referencepixels
Bring the pixel locations of other images into
the 1st image frame of reference using the
homography transformations

Pz Hr Pr
Use Hr to bring points in 2ndimage to 1stimage

Hide p
Those are no longer integer locations

Theninterpolate using for example Bicubic



interpolationfusing the 4nearestneighbours in the
above figure intensity at E is computedusing
those at a b c d which are moral locations
obtained after step

BLENDING

Once all the images
are in the same frame
ofreference intensities

Atty in the overlapregionsI
are computed using

ft blending
I

Feathering
I varies linearly0 from 1 to 0 in the

overlapregion as discussed
in class
I L I t C d Iz

Using Image Pyramids Not discussedin class
one could lookit up

Note Interested people can also use

M estimators for robustness which wasn't
discussed in the class



Geometric Transformations

[
x1 y1 1 0 0 0 −x1x2 −y1x2 −x2
0 0 0 x1 y1 1 −x1y2 −y1y2 −y2

]

h11
h12
h13
...
h33

 = 0

Projective Scaling?

• Are all RHS zeros the same?
• What happens if we set h33 = 1?
• Yields an Ah = b problem



Geometric Transformations

Recognising Panoramas



Geometric Transformations

Consistency

• Pairwise alignment causes drift
• Use all relationships (“loop closures”)
• H ij = H jH

−1
i

• Significantly reduces inconsistencies
• Well-developed method of motion
averaging


