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Geometric Transformations

Use multiple or single image(s)

® Geometric - pure 3D rotations - mosaics

Radiometric - high dynamic range imaging

® Tocus on geometric transformations



Geometric Transformations

coolopticalillusions.com
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Geometric Transformations
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Pinhole Camera

Effects of rotations and translations are mixed

Only rotations ? (Mosaics)

Only translations ? (Stereo; considered later)

Both ? (Multiview Geometry; considered later)




Geometric Transformations
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Pure 3D Camera Rotation
e P=[x,v,2"
® Pure 3D Rotations is a special case
® pyand p,
® related via camera parameters
® does not depend on 3D geometry

=KP

= KRP




Geometric Transformations

Optical Center

Rotating Camera

® Centre of projection same for all cameras
® Fach image samples from same parametric ray set

® No “parallax” problem

Depth plays no role

Excellent for mosaics

® Equivalent to wider FOV camera

From Noah Snavely’s slides



Why Mosaic?

Are you getting the whole picture?
¢ Compact Camera FOV = 50 x 35°

Slide from Brown &-Lowe
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Why Mosaic?

Are you getting the whole picture?
e Compact Camera FOV =50 x 35°
* Human FOV =200 x 135°
« Panoramic Mosaic =360 x 180°

o Slide from Brown &Lowe.



Geometric Transformations
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Pure 3D Camera Translation

eP=[x,v,2"
® p, and p, related via translation and depth

® No simple relationship like pure rotations

® [sed to recover 3D depth (stereo)



Geometric Transformations

urixblog.com



Geometric Transformations

Pure 3D Translations

No single geometric (parametric) transformation

Non-linear dependence on depth

Use to estimate depth (stereo)

Effects of 3D rotation and translation are complementary




We can also take a purely 2D geometric transformation view
Following slides borrowed from Noah Snavely



Image Warping

* image filtering: change range of image

* g(x) = h(f(x))
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* image warping: change domain of image
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Image Warping

* image filtering: change range of image

_ g} = h(flx)

[ 28

1= Val
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* image warping: change domain of image

, ¢ g(x)=f(h(x)) __
Py a(x X Bl

h

Richard Szeliski Image Stitching



Parametric (global) warping

* Examples of parametric warps:

perspective

cylindrical

Richard Szeliski Image Stitching



Parametric (global) warping

* Examples of parametric warps:

aspect

translation rotation

Richard Szeliski Image Stitching



Parametric (global) warping

p=(xy)
* Transformation T is a coordinate-changing machine:
p’ = T(p)
* What does it mean that T is global?
— Is the same for any point p
— can be described by just a few numbers (parameters)
* Let’s consider linear xforms (can be represented by a 2D matrix):

p'=Tp , | =T



Common linear transformations

* Uniform scaling by s:




Common linear transformations

* Rotation by angle 6 (about the origin)

(0,0)

v

[ cos ) —sinh ] What is the inverse?

SiIl 8 COS 9 For rotations:
). i R_l — RT



2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D mirror about Y axis?

d = —=z -1 0
y =y T_[() 1]

2D mirror across line y = x?
1
0

r =y _O
y = T_ll



2x2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
¥ = x4+t

Yy o= y+ty,

NO!

Translation is not a linear operation on 2D coordinates




All 2D Linear Transformations

* Linear transformations are combinations of ...

— Scale, ,
Rotation, X _ a bx
Shear, and y' c djy
— Mirror

* Properties of linear transformations:
— Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

HEB Pl



Homogeneous coordinates

Trick: add one more coordinate:

T

(z,y) = |y
1

homogeneous image
coordinates

Converting from homogeneous coordinates

T

y | = (@/w,y/w)
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Translation

* Solution: homogeneous coordinates to the
rescue

1 0 ¢,
T=|0 1 ¢,

O 0 1
B N
oo 1T



Affine transformations

1 0 t,
T=1|0 1 t,
any transformation with
O O 1 lastrow [00 1] wecallan
affine transformation
a b c
d e f

0 0 1



Basic affine transformations

o O P
o O

X' t| X

y'|= Ly

1 101
Translate

X' cos@ -—sin@ 0O x
y'|=/sind cos@ Ofy
1 0 0 1)1

2D in-plane rotation

|




Affine Transformations

e Affine transformations are combinations of ...

— Linear transformations, and X' a b clx
— Translations {y']—[d € f]{y]

w| [0 0 1w

* Properties of affine transformations:
— Origin does not necessarily map to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved
— Closed under composition



Where do we go from here?

a b c
d e f
O O 1 what happens when we

mess with this row?

affine transformation



Projective Transformations aka
Homographies aka Planar Perspective Maps

.
R

Called a homography
(or planar perspective map)
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Homographies




Homographies

« Homographies ... ! a
/

— Affine transformations, and y/ =|d

w g

— Projective warps

* Properties of projective transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines do not necessarily remain parallel

Ratios are not preserved

Closed under composition

St o

= 0



2D image transformations

//m projective
translation|
_—r

Euclidean Aﬁ _
>
Name Matrix #D.O.F. | Preserves: Icon
translation [ I ‘ t ]) N 2 orientation + - - - D
2X¢
rigid (Euclidean) { R ‘ t ]2 5 3 lengths + - - - O
2X:
similarity { sR | t ] ys 4 angles + - - - O
2X3
affine [ A an 6 parallelism + - - - D

projective [ H } 3 8 straight lines ‘j

These transformations are a nested set of groups
¢ Closed under composition and inverse is a member



Homographies




Image Warping

* Given a coordinate xform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute an
xformed image g(x’,y’) = f(T(x,y))?




Forward Warping

* Send each pixel f(x) to its corresponding
location (x”,y’) = T(x,y) in g(x’,y’)

e What if pixel lands “between” two pixels?




Forward Warping

* Send each pixel f(x,y) to its corresponding
location x” = h(x,y) in g(x’,y’)
e What if pixel lands “between” two pixels?
e Answer: add “contribution” to several pixels,
normalize later (splatting)
e Canstill result in holes

T(x, )
y (xy) y

L L

fixy) X gy

sl
L =1




Inverse Warping

* Get each pixel g(x’y’) from its corresponding
location (x,y) = T1(x,y) in f(x,y)
e Requires taking the inverse of the transform
e What if pixel comes from “between” two pixels?




Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)

What if pixel comes from “between” two pixels?
Answer: resample color value from interpolated
(prefiltered) source image

y y
L 8

fxy) X gy



Interpolation

* Possible interpolation filters:
— nearest neighbor

— bilinear
— bicubic (interpolating)
—sinc

* Needed to prevent “jaggies”
and “texture crawl”

(with prefiltering)



Geometric Transformations

Enlarged FOV; Why do we have a radial shape ?




Following slides on impact of geometry of virtual camera plane
Taken from Magnus Oskarsson’s slides



Panoramas

For calibrated cameras:

Magnus Oskarsson Computer Vision: Lecture 4 <« o »



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4 <« o »



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4



Panoramas

-1500

Points are transformed to the first image.

» <> < =» 20180124 = 35 /42

Magnus Oskarsson Computer Vision: Lecture 4

<« O



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4



Panoramas

For calibrated cameras:

Magnus Oskarsson Computer Vision: Lecture 4 <« o » <& » 4



Panoramas

Magnus Oskarsson Computer Vision: Lecture 4



Panoramas

For calibrated cameras:

Cannot transfer all points into the first image.

Magnus Oskarsson Computer Vision: Lecture 4 <« o » <& »



Panoramas

For calibrated cameras:

X Image2

g Imagel

Project onto a cylinder instead.

Magnus Oskarsson Computer Vision: Lecture 4 <« o » <& »



Panoramas

For calibrated cameras:

R
T

a00 1000 1500 2000 2500 3000

Distances are roughly preserved. Lines may not appear straight.

Magnus Oskarsson Computer Vision: Lecture 4 <« o »



Geometric Transformations

(Tangent
atEquator)

Cylindrical
Mercator

5B
31
§

Pl ) ¥
= simple Cylindrical
Projection ©2010E8, Inc.

Figure 3: A simplistic model showing how Projected Coordinate Systems are created using a sphere. Source:
Britannica

® Topology of sphere # that of 2D plane
® Jssue has plagued map making!

https://medium.com/night ingale/understanding-map- projections-8b23ecbd2a2f


https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

eometric Transformation
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Figure 4 The Mercator projection exaggerates the size of the countries as you move away from the Equa or.
Source: snippet from The True Size Of

https://medium.com/night ingale/understanding-map- projections-8b23ecbd2a2f


https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

Geometric Transformations

Figure 5: Maj

E:"nnhe world in three different projections: (@) s In azimuthal projection that preserves distance from the
preserves area. Source: Wikipedia.

center point, (b)is in aMercator projection that preserves shape, and (c) s in cylindrical equal-area projection that

https://medium.com/night ingale/understanding-map- projections-8b23ecbd2a2f

N


https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

e world. Source: Wikipedi

Figure 6: Robinson projection of the wurlthhe projectionis a comgromse between the area and the shape of
t a.
https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f


https://medium.com/nightingale/understanding-map-projections-8b23ecbd2a2f

Geometric Transformations

United States

.

Europe

UNITED STATES

AFRICA IS BIG!



https://www.visualcapitalist.com/wp-content/uploads/2020/02/true-size-of-africa.jpg

Geometric Transformations

Why is north ‘up’?

Himal Magazine



Geometric Transformations

Recovering Geometry

® Recall pure 3D rotations
* p,=KRK 'p,
® Do we need to know K and R?




Geometric Transformations

Recovering Geometry

® Recall pure 3D rotations

* p,=KRK 'p,

® Do we need to know K and R?
* H=KRK™'

® H is 3 x 3 projective matrix

® H is a homography/collineation/projective transformation
* p,=Hp,




Geometric Transformations
Recovering Geometry

® Recall pure 3D rotations

* p,=KRK 'p,

® Do we need to know K and R?
* H=KRK™'

® H is 3 x 3 projective matrix

® H is a homography/collineation/projective transformation
* p,=Hp,

v

Homography relationship

How can we use this relationship p, = Hp,
Radiometric: £(p) = L(Hp)
® Js this always true?

® Geometric: p, = Hp,

® Need correspondences p, <+ p,




Geometric Transformations

H = arg ming||4(p) *I2(Hl’)||2
Update step H — H +/H
Use L((H +6H)p) ~ L(Hp) +J 6H
Minimise |J]T§H — (L(p) — & (HP))HZ

® Solution: Least square fit of intensities
® [s it a linear problem?
® Warp, Update, Warp, till convergence

® Use all pixels in overlapping area

Robust loss p(.) for each pixel

Multiscale approaches used. Why?

® Many issues in estimation




Geometric Transformations

p, = Hp
x) by ho s X
k) = hor  hoy  hos n
1 hst  hsy hss 1

Geometric Estimation

® Correspondences p, <+ p, (SIFT etc.)

® p, = Hp, is a projective relationship

® Non-linear relationship?




Geometric Transformations

X by by Mz X

b = hor  hyy ko3 n

1 hyr g ks 1
Implies

o hux A+ oy + hug

Xy = (1)
hsix 4 oy + hss
horx + hooy + Mg

pr— 2
»2 hax + Aoy + k33 @)

Can solve using non-linear least squares on equations



Geometric Transformations

Ruxy + hioy + his
ha1x + hsoy + b33
horxy + hooyr + hus
ha1x + hagy + h33

X9 =

Y2 =
Linear in entries of H, carry-over will result in

%o (A1 + haoy + hss) — (hum + hoy + Miz)
Yo (haix + hsoy + hs3) — (horxi + hooy + hg3) =

Leads to
hy
hiy
XN 1 0 0 0 —XiXo  — )Xo —Xg }113 =0
0 0 0 x mn 1 —xp —yyp —xn



Geometric Transformations

XN 1 0 0 0 —XiXo  — )Xo —Xg }113 =0
0 0 0 x mn 1 —xpo —yp —»n

Linear Method

® 2 eqns per correspondence

® Unknowns in H ?

® Collect all equations into A4# = 0 problem
® Solution ?

® Two important considerations

® Robustness (RANSAC or IRLS?)
® Conditioning (Scale of data)




Geometric Transformations

om0 0 0 —mxy —pxg —x hs | —o
0 0 0 xx nm 1 —xp9 —yyp —n

Normalisation

® Recall that all correspondences are noisy

® (x,y) co-ordinates of order of 1000

® Quadratic terms in 4

® Errors in observed 4 are not uniform in dimensions
® Leads to very poor conditioning of 42 =0

® Remedy

® Scale co-ordinates (x, y) to have magnitude around 1
® Solve

® Put back original scale
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Geometric Transformations

hn

g
om0 0 0 —xxo —pxe —x hs | — o
0 0 n bo—xyp —ynp —»

Projective Scaling?

® Are all RHS zeros the same?
® What happens if we set f33 =17
® Yields an 4k = b problem




eometric Transformations

{c)
Figure 9.11 Recognizing panoramas (Brown, Szeliski, and Winder 2003), figures cour-

tesy of Matthew Brown: (a) input images with pairwise matches;
connected components {panoramas); (c) individual panoramas regi
stitched composites.

) images grouped into
tered and blended into

Recognising Panoramas



Geometric Transformations
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Consistency

® Pairwise alignment causes drift

Use all relationships (“loop closures”)
H;=HH;'

Significantly reduces inconsistencies

Well-developed method of motion
averaging




